首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Citrobacter rodentium is an attaching and effacing pathogen used as a murine model for enteropathogenic Escherichia coli. The mucus layers are a complex matrix of molecules, and mucus swelling, hydration and permeability are affected by many factors, including ion composition. Here, we used the C. rodentium model to investigate mucus dynamics during infection. By measuring the mucus layer thickness in tissue explants during infection, we demonstrated that the thickness changes dynamically during the course of infection and that its thickest stage coincides with the start of a decrease of bacterial density at day 14 after infection. Although quantitative PCR analysis demonstrated that mucin mRNA increases during early infection, the increased mucus layer thickness late in infection was not explained by increased mRNA levels. Proteomic analysis of mucus did not demonstrate the appearance of additional mucins, but revealed an increased number of proteins involved in defense responses. Ussing chamber-based electrical measurements demonstrated that ion secretion was dynamically altered during the infection phases. Furthermore, the bicarbonate ion channel Bestrophin-2 mRNA nominally increased, whereas the Cftr mRNA decreased during the late infection clearance phase. Microscopy of Muc2 immunostained tissues suggested that the inner striated mucus layer present in the healthy colon was scarce during the time point of most severe infection (10 days post infection), but then expanded, albeit with a less structured appearance, during the expulsion phase. Together with previously published literature, the data implies a model for clearance where a change in secretion allows reformation of the mucus layer, displacing the pathogen to the outer mucus layer, where it is then outcompeted by the returning commensal flora. In conclusion, mucus and ion secretion are dynamically altered during the C. rodentium infection cycle.  相似文献   

4.

Background

Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking (CS) is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats.

Methods

Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR.

Results

Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline.

Conclusion

Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.  相似文献   

5.
Mucus     
《Current biology : CB》2021,31(15):R938-R945
  相似文献   

6.
7.
The level of lipid hydroperoxides was determined by a newly developed method in rat tissues of vitamin E deficiency, which was a good in viuo model of enhanced radical reactions. In the heart, lung and kidney, the level of lipid hydroperoxides increased significantly as early as 4 weeks after feeding on a tocopherol-deficient diet compared with that of the control group. After 8 weeks of the deficiency, similar results were obtained. These results indicate that the lipid hydroperoxide is available as an extremely sensitive indicator of lipid peroxidation in these organs, because it takes several months to detect manifestations of the vitamin deficiency based on conventional indices.  相似文献   

8.
9.
Several lines of evidence strongly suggest that accumulation of noradrenaline (NA) in the brain may underlie the hyperarousal symptoms experienced in post-traumatic stress disorder. In animal experiments, however, the effect of stress on NA content appears complex; acute stress reduces the level, while chronic stress tends to increase it. To explain this discrepancy, it is necessary to observe the long-term effects of acute stress on NA metabolism in the brain. In this study, rats were exposed to intermittent intense footshock stress for 1 h, and the brain NA content was measured for 7 days after the stress stimulus. Hypothalamic NA content was immediately reduced and recovered within 24 h. However, a significant NA increase was observed 7 days after the footshock. In the cerebral cortex and hippocampus, an increase in NA content was observed 1 day after the stress and lasted for at least 7 days. The fact that the content of 3-methoxy-4-hydroxyphenylglycol, a major NA metabolite, only transiently increased in all these regions possibly reflects NA release. These results indicate that increase in the brain NA content can be induced by acute stress, though its emergence is delayed. Importantly, this suggests that both acute and chronic stress may lead to NA accumulation under the same mechanism.  相似文献   

10.
11.
12.
Intracerebroventricular (ICV) administration of creatine increased cerebral phosphocreatine in normal rats by 67%, the highest increase so far reported in an in vivo model. We used osmotic minipumps (Alzet, Palo Alto, CA, USA) to administer creatine, 0.5mM, to the lateral ventricle at the rate of 10 l/h for 3 days. Brain phosphocreatine in saline-treated controls was 33 ± 17 M/g protein (mean ± SD, N = 9). In creatine-treated rats (0.5 mM for 3 days) such content was 55 ± 17 M/g protein (mean ± SD, N = 7). This difference is statistically significant (p = 0.02, t-test). The increase we found in cerebral phosphocreatine is of an order of magnitude comparable to the increase previously found in in vitro experiments, and may be effective in protecting brain tissue from ischemic damage.  相似文献   

13.
The brain-derived peptidergic drug Cerebrolysin has been found to support the survival of neurones in vitro and in vivo. Positive effects on learning and memory have been demonstrated in various animal models and also in clinical trails. In the present study, the effects of Cerebrolysin and its peptide preparation E021 on the synapse density in the hippocampus, the dentate gyrus and in the entorhinal cortex of 24-month-old rats were investigated. Rats received the drugs or saline for control for 19 consecutive days (2.5ml/kg per day). Slices of the brains were immunohistochemically stained with anti-synaptophysin, which is a specific marker of presynaptic terminals. Quantification of the synapse density was done by using light microscopy and a computerised image analysing system. Our results clearly showed that the rats benefit from the administration of both drugs, showing an enhancement in the number of synaptophysin-immunostained presynaptic terminals in the entorhinal cortex, the dentate gyrus, and also in the hippocampal subfields CA1, CA2, CA3 stratum lucidum and CA3 stratum radiatum. It can be assumed that these effects are the reason for improved cognitive performances of rats treated with Cerebrolysin and E021.  相似文献   

14.
The antigenicities of external mucus from the sea anemones Stoichactis haddoni, Radianthus ritteri and Gyrostoma hertwigi and from the coral Trachyphyllia geoffroyi were compared. Marked differences were found between species but not within species. The differences suggested that mucus composition might be species specific, and hence that it might be one of the factors used by sea anemones and corals in the recognition of foreign anthozoan species.  相似文献   

15.
Abstract: The autoradiographic method with l [35S]-methionine was used to determine whether changes in glucocorticoid circulating levels were associated with changes in local rates of protein synthesis in rat brain. Chronic bilateral adrenalectomy induced an increase of me-thionine incorporation rates into proteins in 60 of the 62 brain regions examined (mean effect, +50%). This effect was confirmed biochemically and quantified by correcting for the relative contribution of methionine derived from protein degradation to the precursor pool for protein synthesis in the whole brain. Acute or chronic administration of corticosterone, at doses that normalize basal levels of adrenocorticotrophic hormone, reversed or prevented the adrenalectomy-induced increase of protein synthesis in most regions. However, in nearly all the regions studied (59 of 62), acute corticosterone administration to sham-operated rats did not change the apparent rate of protein synthesis. These results demonstrate that glucocorticoids exert a generalized inhibitory action on brain protein synthesis, because the stimulatory and persistent effect of adrenalectomy on protein synthesis was antagonized by corticosterone replacements at physiological doses. Thus, the regulation of overall brain protein synthesis by glucocorticoids emphasizes the role of neuroendocrine events on long-term neurochemical processes.  相似文献   

16.
17.
目的:通过外源注射不同剂量的重组人中期因子midkine(rhMK),研究其对大鼠膝关节软骨部分损伤的修复作用。方法:雄性SD大鼠双侧膝关节建立软骨部分损伤的动物模型,术后24小时分别向关节腔内注射生理盐水或rhMK (20μg/kg、60μg/kg、180μg/kg)。于术后8周将大鼠全部处死,取材进行组织学观察,从而确定最佳注射剂量;在药代动力学研究中,按最佳注射剂量向正常大鼠膝关节腔内注射rhMK,分别于注射后1小时、1天、3天、6天、9天、12天和15天处死大鼠,检测膝关节软骨组织中rhMK的含量。结果:不同剂量的重组蛋白对膝关节软骨部分损伤均有不同程度的修复作用,其中180μg/kg的剂量效果最佳;以180μg/kg的剂量向正常大鼠膝关节腔内注射rhMK后,经过Kinetica5.0药代动力学软件拟合后,计算得rhMK在软骨组织中的消除相半衰期为8.69天。结论:rhMK对大鼠膝关节软骨部分损伤有明显的修复作用,最佳注射剂量为180μg/kg,最佳注射时间间隔为8天。  相似文献   

18.
1. In the present work we describe the short term effects of mild neonatal hypoxia on the synapse as assessed by the immunoreactivity (IR) of twosynaptic proteins: rab 3A and synaptobrevin (VAMP).2. Using the sensitive methodology of immunoblotting, we measured rab 3A andVAMP-IR in homogenates from the cerebral cortex, hippocampus, and corpus striatum of control (breathing room air) and hypoxiated (breathing 95.5% N2–6.5% O2 for 70 min) 4-day-old rats at 1, 2, and 6 h after the end of the hypoxia. Immunostaining with examination by light microscopy was performed using the synaptic protein-specific antibodies on fixed brain sections from animals belonging to the same litter and submitted to hypoxia.3. A transient increase of VAMP-IR was observed in the hippocampus and corpus striatum, and for rab 3A in the striatum, 1 h after initiating reoxygenation.At the following time points the values returned to control levels. This effectwas less clearly observed in the immunostained sections.4. Mild hypoxia has an effect on sensitive brain regions, eliciting an increase in the IR of at least two proteins involved in the synaptic vesicle cycle. The transient nature of this effect possibly indicates the activation of endogenous neuroprotective mechanisms.  相似文献   

19.

Background and Purpose

Recent evidence indicates an involvement of P2X7 purinergic receptor (P2X7R) in the fine tuning of immune functions, as well as in driving enteric neuron apoptosis under intestinal inflammation. However, the participation of this receptor in the regulation of enteric neuromuscular functions remains undetermined. This study was aimed at investigating the role of P2X7Rs in the control of colonic motility in experimental colitis.

Experimental Approach

Colitis was induced in rats by 2,4-dinitrobenzenesulfonic acid. P2X7R distribution was examined by immunofluorescence analysis. The effects of A804598 (selective P2X7R antagonist) and BzATP (P2X7R agonist) were tested on contractions of longitudinal smooth muscle evoked by electrical stimulation or by carbachol in the presence of tetrodotoxin.

Key Results

P2X7Rs were predominantly located in myenteric neurons, but, in the presence of colitis, their expression increased in the neuromuscular layer. In normal preparations, A804598 elicited a negligible increase in electrically induced contractions, while a significant enhancement was recorded in inflamed tissues. In the presence of Nω-propyl-L-arginine (NPA, neuronal nitric oxide synthase inhibitor) the A804598 effects were lost. P2X7R stimulation with BzATP did not significantly affect electrical-induced contractions in normal colon, while a marked reduction was recorded under inflammation. The inhibitory effect of BzATP was antagonized by A804598, and it was also markedly blunted by NPA. Both P2X7R ligands did not affect carbachol-induced contractions.

Conclusions and Implications

The purinergic system contributes to functional neuromuscular changes associated with bowel inflammation via P2X7Rs, which modulate the activity of excitatory cholinergic nerves through a facilitatory control on inhibitory nitrergic pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号