首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Studies of the immunogenicity of the killed bivalent whole cell oral cholera vaccine, Shanchol, have been performed in historically cholera-endemic areas of Asia. There is a need to assess the immunogenicity of the vaccine in Haiti and other populations without historical exposure to Vibrio cholerae.

Methodology/Principal Findings

We measured immune responses after administration of Shanchol, in 25 adults, 51 older children (6–17 years), and 47 younger children (1–5 years) in Haiti, where cholera was introduced in 2010. A≥4-fold increase in vibriocidal antibody titer against V. cholerae O1 Ogawa was observed in 91% of adults, 74% of older children, and 73% of younger children after two doses of Shanchol; similar responses were observed against the Inaba serotype. A≥2-fold increase in serum O-antigen specific polysaccharide IgA antibody levels against V. cholerae O1 Ogawa was observed in 59% of adults, 45% of older children, and 61% of younger children; similar responses were observed against the Inaba serotype. We compared immune responses in Haitian individuals with age- and blood group-matched individuals from Bangladesh, a historically cholera-endemic area. The geometric mean vibriocidal titers after the first dose of vaccine were lower in Haitian than in Bangladeshi vaccinees. However, the mean vibriocidal titers did not differ between the two groups after the second dose of the vaccine.

Conclusions/Significance

A killed bivalent whole cell oral cholera vaccine, Shanchol, is highly immunogenic in Haitian adults and children. A two-dose regimen may be important in Haiti, and other populations lacking previous repeated exposures to V. cholerae.  相似文献   

2.

Background

During the development of a vaccine, identification of the correlates of protection is of paramount importance for establishing an objective criterion for the protective performance of the vaccine. However, the ascertainment of correlates of immunity conferred by any vaccine is a difficult task.

Methods

While conducting a phase three double-blind, cluster-randomized, placebo-controlled trial of a bivalent killed whole-cell oral cholera vaccine in Kolkata, we evaluated the immunogenicity of the vaccine in a subset of participants. Randomly chosen participants (recipients of vaccine or placebo) were invited to provide blood samples at baseline, 14 days after the second dose and one year after the first dose. At these time points, serum geometric mean titers (GMT) of vibriocidal antibodies and seroconversion rates for vaccine and placebo arms were calculated and compared across the age strata (1 to 5 years, 5 to 15 years and more than 15 years) as well as for all age groups.

Results

Out of 137 subjects included in analysis, 69 were vaccinees and 68 received placebo. There were 5•7 and 5•8 geometric mean fold (GMF) rises in titers to Vibrio cholerae Inaba and Ogawa, respectively at 14 days after the second dose, with 57% and 61% of vaccinees showing a four-fold or greater titer rise, respectively. After one year, the titers to Inaba and Ogawa remained 1•7 and 2•8 fold higher, respectively, compared to baseline. Serum vibriocidal antibody response to V. cholerae O139 was much lower than that to Inaba or Ogawa. No significant differences in the GMF-rises were observed among the age groups.

Conclusions

The reformulated oral cholera vaccine induced a statistically significant anti-O1 Inaba and O1 Ogawa vibriocidal antibody response 14 days after vaccination, which although declined after one year remained significantly higher than baseline. Despite this decline, the vaccine remained protective five years after vaccination.  相似文献   

3.

Introduction

The substantial morbidity and mortality associated with recent cholera outbreaks in Haiti and Zimbabwe, as well as with cholera endemicity in countries throughout Asia and Africa, make a compelling case for supplementary cholera control measures in addition to existing interventions. Clinical trials conducted in Kolkata, India, have led to World Health Organization (WHO)-prequalification of Shanchol, an oral cholera vaccine (OCV) with a demonstrated 65% efficacy at 5 years post-vaccination. However, before this vaccine is widely used in endemic areas or in areas at risk of outbreaks, as recommended by the WHO, policymakers will require empirical evidence on its implementation and delivery costs in public health programs. The objective of the present report is to describe the organization, vaccine coverage, and delivery costs of mass vaccination with a new, less expensive OCV (Shanchol) using existing public health infrastructure in Odisha, India, as a model.

Methods

All healthy, non-pregnant residents aged 1 year and above residing in selected villages of the Satyabadi block (Puri district, Odisha, India) were invited to participate in a mass vaccination campaign using two doses of OCV. Prior to the campaign, a de jure census, micro-planning for vaccination and social mobilization activities were implemented. Vaccine coverage for each dose was ascertained as a percentage of the censused population. The direct vaccine delivery costs were estimated by reviewing project expenditure records and by interviewing key personnel.

Results

The mass vaccination was conducted during May and June, 2011, in two phases. In each phase, two vaccine doses were given 14 days apart. Sixty-two vaccination booths, staffed by 395 health workers/volunteers, were established in the community. For the censused population, 31,552 persons (61% of the target population) received the first dose and 23,751 (46%) of these completed their second dose, with a drop-out rate of 25% between the two doses. Higher coverage was observed among females and among 6–17 year-olds. Vaccine cost at market price (about US$1.85/dose) was the costliest item. The vaccine delivery cost was $0.49 per dose or $1.13 per fully vaccinated person.

Discussion

This is the first undertaken project to collect empirical evidence on the use of Shanchol within a mass vaccination campaign using existing public health program resources. Our findings suggest that mass vaccination is feasible but requires detailed micro-planning. The vaccine and delivery cost is affordable for resource poor countries. Given that the vaccine is now WHO pre-qualified, evidence from this study should encourage oral cholera vaccine use in countries where cholera remains a public health problem.  相似文献   

4.

Background

Killed oral cholera vaccines (OCVs) are available but not used routinely for cholera control except in Vietnam, which produces its own vaccine. In 2007–2008, unprecedented cholera outbreaks occurred in the capital, Hanoi, prompting immunization in two districts. In an outbreak investigation, we assessed the effectiveness of killed OCV use after a cholera outbreak began.

Methodology/Principal Findings

From 16 to 28 January 2008, vaccination campaigns with the Vietnamese killed OCV were held in two districts of Hanoi. No cholera cases were detected from 5 February to 4 March 2008, after which cases were again identified. Beginning 8 April 2008, residents of four districts of Hanoi admitted to one of five hospitals for acute diarrhea with onset after 5 March 2008 were recruited for a matched, hospital-based, case-control outbreak investigation. Cases were matched by hospital, admission date, district, gender, and age to controls admitted for non-diarrheal conditions. Subjects from the two vaccinated districts were evaluated to determine vaccine effectiveness. 54 case-control pairs from the vaccinated districts were included in the analysis. There were 8 (15%) and 16 (30%) vaccine recipients among cases and controls, respectively. The vaccine was 76% protective against cholera in this setting (95% CI 5% to 94%, P = 0.042) after adjusting for intake of dog meat or raw vegetables and not drinking boiled or bottled water most of the time.

Conclusions/Significance

This is the first study to explore the effectiveness of the reactive use of killed OCVs during a cholera outbreak. Our findings suggest that killed OCVs may have a role in controlling cholera outbreaks.  相似文献   

5.

Background

Despite recent progress in understanding the molecular basis of Vibrio cholerae pathogenesis, there is relatively little knowledge of the factors that determine the variability in human susceptibility to V. cholerae infection.

Methods and Findings

We performed an observational study of a cohort of household contacts of cholera patients in Bangladesh, and compared the baseline characteristics of household members who went on to develop culture-positive V. cholerae infection with individuals who did not develop infection. Although the vibriocidal antibody is the only previously described immunologic marker associated with protection from V. cholerae infection, we found that levels of serum IgA specific to three V. cholerae antigens—the B subunit of cholera toxin, lipopolysaccharide, and TcpA, the major component of the toxin–co-regulated pilus—also predicted protection in household contacts of patients infected with V. cholerae O1, the current predominant cause of cholera. Circulating IgA antibodies to TcpA were also associated with protection from V. cholerae O139 infection. In contrast, there was no association between serum IgG antibodies specific to these three antigens and protection from infection with either serogroup. We also found evidence that host genetic characteristics and serum retinol levels modify susceptibility to V. cholerae infection.

Conclusions

Our observation that levels of serum IgA (but not serum IgG) directed at certain V. cholerae antigens are associated with protection from infection underscores the need to better understand anti–V. cholerae immunity at the mucosal surface. Furthermore, our data suggest that susceptibility to V. cholerae infection is determined by a combination of immunologic, nutritional, and genetic characteristics; additional factors that influence susceptibility to cholera remain unidentified.  相似文献   

6.

Introduction

The outbreak of cholera in Zimbabwe intensified interest in the control and prevention of cholera. While there is agreement that safe water, sanitation, and personal hygiene are ideal for the long term control of cholera, there is controversy about the role of newer approaches such as oral cholera vaccines (OCVs). In October 2009 the Strategic Advisory Group of Experts advised the World Health Organization to consider reactive vaccination campaigns in response to large cholera outbreaks. To evaluate the potential benefit of this pivotal change in WHO policy, we used existing data from cholera outbreaks to simulate the number of cholera cases preventable by reactive mass vaccination.

Methods

Datasets of cholera outbreaks from three sites with varying cholera endemicity—Zimbabwe, Kolkata (India), and Zanzibar (Tanzania)—were analysed to estimate the number of cholera cases preventable under differing response times, vaccine coverage, and vaccine doses.

Findings

The large cholera outbreak in Zimbabwe started in mid August 2008 and by July 2009, 98,591 cholera cases had been reported with 4,288 deaths attributed to cholera. If a rapid response had taken place and half of the population had been vaccinated once the first 400 cases had occurred, as many as 34,900 (40%) cholera cases and 1,695 deaths (40%) could have been prevented. In the sites with endemic cholera, Kolkata and Zanzibar, a significant number of cases could have been prevented but the impact would have been less dramatic. A brisk response is required for outbreaks with the majority of cases occurring during the early weeks. Even a delayed response can save a substantial number of cases and deaths in long, drawn-out outbreaks. If circumstances prevent a rapid response there are good reasons to roll out cholera mass vaccination campaigns well into the outbreak. Once a substantial proportion of a population is vaccinated, outbreaks in subsequent years may be reduced if not prevented. A single dose vaccine would be of advantage in short, small outbreaks.

Conclusions

We show that reactive vaccine use can prevent cholera cases and is a rational response to cholera outbreaks in endemic and non-endemic settings. In large and long outbreaks a reactive vaccination with a two-dose vaccine can prevent a substantial proportion of cases. To make mass vaccination campaigns successful, it would be essential to agree when to implement reactive vaccination campaigns and to have a dynamic and determined response team that is familiar with the logistic challenges on standby. Most importantly, the decision makers in donor and recipient countries have to be convinced of the benefit of reactive cholera vaccinations.  相似文献   

7.

Background

Cholera is endemic in Bangladesh, with outbreaks reported annually. Currently, the majority of epidemic cholera reported globally is El Tor biotype Vibrio cholerae isolates of the serogroup O1. However, in Bangladesh, outbreaks attributed to V. cholerae serogroup O139 isolates, which fall within the same phylogenetic lineage as the O1 serogroup isolates, were seen between 1992 and 1993 and in 2002 to 2005. Since then, V. cholerae serogroup O139 has only been sporadically isolated in Bangladesh and is now rarely isolated elsewhere.

Methods

Here, we present case histories of four cholera patients infected with V. cholerae serogroup O139 in 2013 and 2014 in Bangladesh. We comprehensively typed these isolates using conventional approaches, as well as by whole genome sequencing. Phenotypic typing and PCR confirmed all four isolates belonging to the O139 serogroup.

Findings

Whole genome sequencing revealed that three of the isolates were phylogenetically closely related to previously sequenced El Tor biotype, pandemic 7, toxigenic V. cholerae O139 isolates originating from Bangladesh and elsewhere. The fourth isolate was a non-toxigenic V. cholerae that, by conventional approaches, typed as O139 serogroup but was genetically divergent from previously sequenced pandemic 7 V. cholerae lineages belonging to the O139 or O1 serogroups.

Conclusion

These results suggest that previously observed lineages of V. cholerae O139 persist in Bangladesh and can cause clinical disease and that a novel disease-causing non-toxigenic O139 isolate also occurs.  相似文献   

8.

Background

Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children.

Methodology

Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide–core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli.

Principal Findings

We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model.

Conclusion

We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens.  相似文献   

9.

Background

Use of cholera vaccines in response to epidemics (reactive vaccination) may provide an effective supplement to traditional control measures. In Haiti, reactive vaccination was considered but, until recently, rejected in part due to limited global supply of vaccine. Using Bissau City, Guinea-Bissau as a case study, we explore neighborhood-level transmission dynamics to understand if, with limited vaccine and likely delays, reactive vaccination can significantly change the course of a cholera epidemic.

Methods and Findings

We fit a spatially explicit meta-population model of cholera transmission within Bissau City to data from 7,551 suspected cholera cases from a 2008 epidemic. We estimated the effect reactive vaccination campaigns would have had on the epidemic under different levels of vaccine coverage and campaign start dates. We compared highly focused and diffuse strategies for distributing vaccine throughout the city. We found wide variation in the efficiency of cholera transmission both within and between areas of the city. “Hotspots”, where transmission was most efficient, appear to drive the epidemic. In particular one area, Bandim, was a necessary driver of the 2008 epidemic in Bissau City. If vaccine supply were limited but could have been distributed within the first 80 days of the epidemic, targeting vaccination at Bandim would have averted the most cases both within this area and throughout the city. Regardless of the distribution strategy used, timely distribution of vaccine in response to an ongoing cholera epidemic can prevent cases and save lives.

Conclusions

Reactive vaccination can be a useful tool for controlling cholera epidemics, especially in urban areas like Bissau City. Particular neighborhoods may be responsible for driving a city''s cholera epidemic; timely and targeted reactive vaccination at such neighborhoods may be the most effective way to prevent cholera cases both within that neighborhood and throughout the city.  相似文献   

10.

Background

Human genetic factors such as blood group antigens may affect the severity of infectious diseases. Presence of specific ABO and Lewis blood group antigens has been shown previously to be associated with the risk of different enteric infections. The aim of this study was to determine the relationship of the Lewis blood group antigens with susceptibility to cholera, as well as severity of disease and immune responses to infection.

Methodology

We determined Lewis and ABO blood groups of a cohort of patients infected by Vibrio cholerae O1, their household contacts, and healthy controls, and analyzed the risk of symptomatic infection, severity of disease if infected and immune response following infection.

Principal Findings

We found that more individuals with cholera expressed the Le(a+b−) phenotype than the asymptomatic household contacts (OR 1.91, 95% CI 1.03–3.56) or healthy controls (OR 1.90, 95% CI 1.13–3.21), as has been seen previously for the risk of symptomatic ETEC infection. Le(a–b+) individuals were less susceptible to cholera and if infected, required less intravenous fluid replacement in hospital, suggesting that this blood group may be associated with protection against V. cholerae O1. Individuals with Le(a–b−) blood group phenotype who had symptomatic cholera had a longer duration of diarrhea and required higher volumes of intravenous fluid replacement. In addition, individuals with Le(a–b−) phenotype also had lessened plasma IgA responses to V. cholerae O1 lipopolysaccharide on day 7 after infection compared to individuals in the other two Lewis blood group phenotypes.

Conclusion

Individuals with Lewis blood type Le(a+b−) are more susceptible and Le(a–b+) are less susceptible to V. cholerae O1 associated symptomatic disease. Presence of this histo-blood group antigen may be included in evaluating the risk for cholera in a population, as well as in vaccine efficacy studies, as is currently being done for the ABO blood group antigens.  相似文献   

11.

Background

Despite vaccination with a commercial vaccine with a documented protective effect against Vibrio anguillarum O1 disease outbreaks caused by this bacterium have been registered among rainbow trout at Danish fish farms. The present study examined specific serum antibody levels as a valid marker for assessing vaccination status in a fish population. For this purpose a highly sensitive enzyme-linked immunosorbent assay (ELISA) was developed and used to evaluate sera from farmed rainbow trout vaccinated against V. anguillarum O1.

Study Design

Immune sera from rainbow trout immunised with an experimental vaccine based on inactivated V. anguillarum O1 bacterin in Freund’s incomplete adjuvant were used for ELISA optimisation. Subsequently, sera from farmed rainbow trout vaccinated with a commercial vaccine against V. anguillarum were analysed with the ELISA. The measured serum antibody levels were compared with the vaccine status of the fish (vaccinated/unvaccinated) as evaluated through visual examination.

Results

Repeated immunisation with the experimental vaccine lead to increasing levels of specific serum antibodies in the vaccinated rainbow trout. The farmed rainbow trout responded with high antibody levels to a single injection with the commercial vaccine. However, the diversity in responses was more pronounced in the farmed fish. Primary visual examinations for vaccine status in rainbow trout from the commercial farm revealed a large pool of unvaccinated specimens (vaccination failure rate = 20%) among the otherwise vaccinated fish. Through serum analyses using the ELISA in a blinded set-up it was possible to separate samples collected from the farmed rainbow trout into vaccinated and unvaccinated fish.

Conclusions

Much attention has been devoted to development of new and more effective vaccines. Here we present a case from a Danish rainbow trout farm indicating that attention should also be directed to the vaccination procedure in order to secure high vaccination frequencies necessary for optimal protection with a reported effective vaccine.  相似文献   

12.

Introduction

Since 2010, WHO has recommended oral cholera vaccines as an additional strategy for cholera control. During a cholera episode, pregnant women are at high risk of complications, and the risk of fetal death has been reported to be 2–36%. Due to a lack of safety data, pregnant women have been excluded from most cholera vaccination campaigns. In 2012, reactive campaigns using the bivalent killed whole-cell oral cholera vaccine (BivWC), included all people living in the targeted areas aged ≥1 year regardless of pregnancy status, were implemented in Guinea. We aimed to determine whether there was a difference in pregnancy outcomes between vaccinated and non-vaccinated pregnant women.

Methods and Findings

From 11 November to 4 December 2013, we conducted a retrospective cohort study in Boffa prefecture among women who were pregnant in 2012 during or after the vaccination campaign. The primary outcome was pregnancy loss, as reported by the mother, and fetal malformations, after clinical examination. Primary exposure was the intake of the BivWC vaccine (Shanchol) during pregnancy, as determined by a vaccination card or oral history. We compared the risk of pregnancy loss between vaccinated and non-vaccinated women through binomial regression analysis. A total of 2,494 pregnancies were included in the analysis. The crude incidence of pregnancy loss was 3.7% (95%CI 2.7–4.8) for fetuses exposed to BivWC vaccine and 2.6% (0.7–4.5) for non-exposed fetuses. The incidence of malformation was 0.6% (0.1–1.0) and 1.2% (0.0–2.5) in BivWC-exposed and non-exposed fetuses, respectively. In both crude and adjusted analyses, fetal exposure to BivWC was not significantly associated with pregnancy loss (adjusted risk ratio (aRR = 1.09 [95%CI: 0.5–2.25], p = 0.818) or malformations (aRR = 0.50 [95%CI: 0.13–1.91], p = 0.314).

Conclusions

In this large retrospective cohort study, we found no association between fetal exposure to BivWC and risk of pregnancy loss or malformation. Despite the weaknesses of a retrospective design, we can conclude that if a risk exists, it is very low. Additional prospective studies are warranted to add to the evidence base on OCV use during pregnancy. Pregnant women are particularly vulnerable during cholera episodes and should be included in vaccination campaigns when the risk of cholera is high, such as during outbreaks.  相似文献   

13.

Background

Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS).

Methodology

Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization.

Principle Findings

Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model.

Conclusion

We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.  相似文献   

14.

Background

Cholera toxin (CT) and toxin-co-regulated pili (TCP) are the major virulence factors of Vibrio cholerae O1 and O139 strains that contribute to the pathogenesis of disease during devastating cholera pandemics. However, CT and TCP negative V. cholerae strains are still able to cause severe diarrheal disease in humans through mechanisms that are not well understood.

Methodology/Principal Findings

To determine the role of other virulence factors in V. cholerae pathogenesis, we used a CT and TCP independent infection model in the nematode Caenorhabditis elegans and identified the hemolysin A (hlyA) gene as a factor responsible for animal death and developmental delay. We demonstrated a correlation between the severity of infection in the nematode and the level of hemolytic activity in the V. cholerae biotypes. At the cellular level, V. cholerae infection induces formation of vacuoles in the intestinal cells in a hlyA dependent manner, consistent with the previous in vitro observations.

Conclusions/Significance

Our data strongly suggest that HlyA is a virulence factor in C. elegans infection leading to lethality and developmental delay presumably through intestinal cytopathic changes.  相似文献   

15.

Background

In mass vaccination campaigns, large volumes of data must be managed efficiently and accurately. In a reactive oral cholera vaccination (OCV) campaign in rural Haiti during an ongoing epidemic, we used a mobile health (mHealth) system to manage data on 50,000 participants in two isolated communities.

Methods

Data were collected using 7-inch tablets. Teams pre-registered and distributed vaccine cards with unique barcodes to vaccine-eligible residents during a census in February 2012. First stored on devices, data were uploaded nightly via Wi-fi to a web-hosted database. During the vaccination campaign between April and June 2012, residents presented their cards at vaccination posts and their barcodes were scanned. Vaccinee data from the census were pre-loaded on tablets to autopopulate the electronic form. Nightly analysis of the day''s community coverage informed the following day''s vaccination strategy. We generated case-finding reports allowing us to identify those who had not yet been vaccinated.

Results

During 40 days of vaccination, we collected approximately 1.9 million pieces of data. A total of 45,417 people received at least one OCV dose; of those, 90.8% were documented to have received 2 doses. Though mHealth required up-front financial investment and training, it reduced the need for paper registries and manual data entry, which would have been costly, time-consuming, and is known to increase error. Using Global Positioning System coordinates, we mapped vaccine posts, population size, and vaccine coverage to understand the reach of the campaign. The hardware and software were usable by high school-educated staff.

Conclusion

The use of mHealth technology in an OCV campaign in rural Haiti allowed timely creation of an electronic registry with population-level census data, and a targeted vaccination strategy in a dispersed rural population receiving a two-dose vaccine regimen. The use of mHealth should be strongly considered in mass vaccination campaigns in future initiatives.  相似文献   

16.

Background

A live oral cholera vaccine VA 1.4 developed from a non-toxigenic Vibrio cholerae O1 El Tor strain using ctxB gene insertion was further developed into a clinical product following cGMP and was evaluated in a double-blind randomized placebo controlled parallel group two arm trial with allocation ratio of 1∶1 for safety and immunogenicity in men and women aged 18–60 years from Kolkata, India.

Method

A lyophilized dose of 1.9×109 CFU (n = 44) or a placebo (n = 43) reconstituted with a diluent was administered within 5 minutes of drinking 100 ml of a buffer solution made of sodium bicarbonate and ascorbic acid and a second dose on day 14.

Result

The vaccine did not elicit any diarrhea related adverse events. Other adverse events were rare, mild and similar in two groups. One subject in the vaccine group excreted the vaccine strain on the second day after first dose. The proportion of participants who seroconverted (i.e. had 4-folds or higher rise in reciprocal titre) in the vaccine group were 65.9% (95% CI: 50.1%–79.5%) at both 7 days (i.e. after 1st dose) and 21 days (i.e. after 2nd dose). None of the placebo recipients seroconverted. Anti-cholera toxin antibody was detected in very few recipients of the vaccine.

Conclusion

This study demonstrates that VA 1.4 at a single dose of 1.9×109 is safe and immunogenic in adults from a cholera endemic region. No additional benefit after two doses was seen.

Trial Registration

Clinical Trials Registry-India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2012/04/002582  相似文献   

17.

Background

Vibrio cholerae O1 El Tor dominated the seventh cholera pandemic which occurred in the 1960s. For two decades, variants of V. cholerae O1 El Tor that produce classical cholera toxin have emerged and spread globally, replacing the prototypic El Tor biotype. This study aims to characterize V. cholerae O1 isolates from outbreaks in Thailand with special reference to genotypic variations over time.

Methods/Findings

A total of 343 isolates of V. cholerae O1 from cholera outbreaks from 2007 to 2010 were investigated, and 99.4% were found to carry the classical cholera toxin B subunit (ctxB) and El Tor rstR genes. Pulsed-field gel electrophoresis (PFGE) differentiated the isolates into 10 distinct pulsotypes, clustered into two major groups, A and B, with an overall similarity of 88%. Ribotyping, multiple-locus variable-number tandem-repeat analysis (MLVA), and PCR to detect Vibrio seventh pandemic island II (VSP-II) related genes of randomly selected isolates from each pulsotype corresponded to the results obtained by PFGE. Epidemiological investigations revealed that MLVA type 2 was strongly associated with a cholera outbreak in northeastern Thailand in 2007, while MLVA type 7 dominated the outbreaks of the southern Gulf areas in 2009 and MLVA type 4 dominated the outbreaks of the central Gulf areas during 2009–2010. Only MLVA type 16 isolates were found in a Thai-Myanmar border area in 2010, whereas those of MLVA types 26, 39, and 41 predominated this border area in 2008. Type 39 then disappeared 1–2 years later as MLVA type 41 became prevalent. Type 41 was also found to infect an outbreak area.

Conclusions

MLVA provided a high-throughput genetic typing tool for understanding the in-depth epidemiology of cholera outbreaks. Our epidemiological surveys suggest that some clones of V. cholerae O1 with similar but distinctive genetic traits circulate in outbreak sites, while others disappear over time.  相似文献   

18.
19.

Background

Vibrio cholerae O1 and V. cholerae O139 infect humans, causing the diarrheal and waterborne disease cholera, which is a worldwide health problem. V. cholerae and the free-living amoebae Acanthamoeba species are present in aquatic environments, including drinking water and it has shown that Acanthamoebae support bacterial growth and survival. Recently it has shown that Acanthamoeba species enhanced growth and survival of V. cholerae O1 and O139. Water samples from different cholera endemic areas in Sudan were collected with the aim to detect both V. cholerae and Acanthamoeba species from same natural water samples by polymerase chain reaction (PCR).

Findings

For the first time both V. cholerae and Acanthamoeba species were detected in same natural water samples collected from different cholera endemic areas in Sudan. 89% of detected V. cholerae was found with Acanthamoeba in same water samples.

Conclusions

The current findings disclose Acanthamoedae as a biological factor enhancing survival of V. cholerae in nature.  相似文献   

20.

Background

Live vaccines have distinct safety profiles, potentially causing systemic reactions one to 2 weeks after administration. In the province of Ontario, Canada, live MMR vaccine is currently recommended at age 12 months and 18 months.

Methods

Using the self-controlled case series design we examined 271,495 12 month vaccinations and 184,312 18 month vaccinations to examine the relative incidence of the composite endpoint of emergency room visits or hospital admissions in consecutive one day intervals following vaccination. These were compared to a control period 20 to 28 days later. In a post-hoc analysis we examined the reasons for emergency room visits and the average acuity score at presentation for children during the at-risk period following the 12 month vaccine.

Results

Four to 12 days post 12 month vaccination, children had a 1.33 (1.29–1.38) increased relative incidence of the combined endpoint compared to the control period, or at least one event during the risk interval for every 168 children vaccinated. Ten to 12 days post 18 month vaccination, the relative incidence was 1.25 (95%, 1.17–1.33) which represented at least one excess event for every 730 children vaccinated. The primary reason for increased events was statistically significant elevations in emergency room visits following all vaccinations. There were non-significant increases in hospital admissions. There were an additional 20 febrile seizures for every 100,000 vaccinated at 12 months.

Conclusions

There are significantly elevated risks of primarily emergency room visits approximately one to two weeks following 12 and 18 month vaccination. Future studies should examine whether these events could be predicted or prevented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号