首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Following the primary mechanical impact, traumatic brain injury (TBI) induces the simultaneous production of a variety of pro- and anti-inflammatory molecular mediators. Given the variety of cell types and their requisite expression of cognate receptors this creates a highly complex inflammatory milieu. Increasingly in neurotrauma research there has been an effort to define injury-induced inflammatory responses within the context of in vitro defined macrophage polarization phenotypes, known as “M1” and “M2”. Herein, we expand upon our previous work in a rodent model of TBI to show that the categorization of inflammatory response cannot be so easily delineated using this nomenclature. Specifically, we show that TBI elicited a wide spectrum of concurrent expression responses within both pro- and anti-inflammatory arms. Moreover, we show that the cells principally responsible for the production of these inflammatory mediators, microglia/macrophages, simultaneously express both “M1” and “M2” phenotypic markers. Overall, these data align with recent reports suggesting that microglia/macrophages cannot adequately switch to a polarized “M1-only” or “M2-only” phenotype, but display a mixed phenotype due to the complex signaling events surrounding them.  相似文献   

2.
We observed the therapeutic effect of Fasudil and explored its mechanisms in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Fasudil, a selective Rho kinase (ROCK) inhibitor, was injected intraperitoneally at 40 mg/kg/d in early and late stages of EAE induction. Fasudil ameliorated the clinical severity of EAE at different stages, and decreased the expression of ROCK-II in spleen, accompanied by an improvement in demyelination and inhibition of inflammatory cells. Fasudil mainly inhibited CD4+IL-17+ T cells in early treatment, but also elevated CD4+IL-10+ regulatory T cells and IL-10 production in late treatment. The treatment of Fasudil shifted inflammatory M1 to anti-inflammatory M2 macrophages in both early and late treatment, being shown by inhibiting CD16/32, iNOS, IL-12, TLR4 and CD40 and increasing CD206, Arg-1, IL-10 and CD14 in spleen. By using Western blot and immunohistochemistry, iNOS and Arg-1, as two most specific markers for M1 and M2, was inhibited or induced in splenic macrophages and spinal cords of EAE mice treated with Fasudil. In vitro experiments also indicate that Fasudil shifts M1 to M2 phenotype, which does not require the participation or auxiliary of other cells. The polarization of M2 macrophages was associated with the decrease of inflammatory cytokine IL-1β, TNF-α and MCP-1. These results demonstrate that Fasudil has therapeutic potential in EAE possibly through inducing the polarization of M2 macrophages and inhibiting inflammatory responses.  相似文献   

3.
Tumor-associated macrophages (TAMs) are essential cellular components within tumor microenvironment (TME). TAMs are educated by TME to transform to M2 polarized population, showing a M2-like phenotype, IL-10high, IL-12low, TGF-βhigh. STAT3 signaling triggers crosstalk between tumor cells and TAMs, and is crucial for the regulation of malignant progression. In our study, legumain-targeting liposomal nanoparticles (NPs) encapsulating HC were employed to suppress STAT3 activity and “re-educate” TAMs, and to investigate the effects of suppression of tumor progression in vivo. The results showed that TAMs treated by HC encapsuled NPs could switch to M1-like phenotype, IL-10low, IL-12high, TGF-βlow, and the “re-educated” macrophages (M1-like macrophages) considerably demonstrated opposite effect of M2-like macrophages, especially the induction of 4T1 cells migration and invasion in vitro, and suppression of tumor growth, angiogenesis and metastasis in vivo. These data indicated that inhibition of STAT3 activity of TAMs by HC-NPs was able to reverse their phenotype and could regulate their crosstalk between tumor cells and TAMs in order to suppress tumor progression.  相似文献   

4.
This work aimed to investigate the role and mechanism of Sunitinib (Sun) in suppressing M2 polarization of macrophages in tumor microenvironment (TME). IL-4 was applied to induce the M2 polarization of RAW264.7 cells, followed by treatment with Sun at 50 and 100 nM. Flow cytometry (FCM) was conducted to detect the proportion of F4/80 + CD206 + cells. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of IL-10, Arg-1 and VEGF. Immunofluorescence (IF) staining was carried out to detect the expression of CD206 and Arg-1. Besides, western-Blot (WB) assay was performed to measure the levels of p-JAK1 and p-STAT6 proteins. After polarization, the macrophage culture medium was employed to culture hepatocellular carcinoma (HCC) Hca-F cells. Thereafter, Transwell assays were conducted to examine cell invasion and migration, whereas plate clone formation assay was carried out to detect the clone forming capacity. In further experiments, cells were treated with the STAT6 inhibitor, or STAT6 inhibitor + Sun. Then, the polarization levels of RAW264.7 cells were detected. Moreover, this study established the xenograft tumor mouse model. Later, CD206 and Ki67 expression, IL-10, Arg-1 and VEGF expression levels in tissues, and p-JAK1 and p-STAT6 protein levels were detected by histochemical staining. Sun suppressed the M2 polarization of RAW264.7 cells. Compared with IL-4 treatment, the proportion of F4/80 + CD206 + cells decreased. Meanwhile, the levels of IL-10, Arg-1 and VEGF were downregulated, and the phosphorylation level of JAK1-STAT6 signaling was suppressed. After being cocultured with Hca-F, the malignant behaviors of HCC cells were suppressed after Sun treatment. Similarly, STAT6 inhibitor treatment suppressed the M2 polarization, while the combined application of Sun did not further restrain the polarization level. In the mouse model, Sun suppressed the expression of CD206 and Ki67, simultaneously inhibiting the polarization of JAK1-STAT6 signaling. Sunitinib can suppress the M2 polarization of macrophages to exert the anti-HCC effect, which is its another anticancer mechanism  相似文献   

5.
Atherosclerosis (AS) is characterized as progressive arterial plaque, which is easy to rupture under low stability. Macrophage polarization and inflammation response plays an important role in regulating plaque stability. Ginsenoside Rb1 (Rb1), one of the main active principles of Panax Ginseng, has been found powerful potential in alleviating inflammatory response. However, whether Rb1 could exert protective effects on AS plaque stability remains unclear. This study investigated the role of Rb1 on macrophage polarization and atherosclerotic plaque stability using primary peritoneal macrophages isolated from C57BL/6 mice and AS model in ApoE?/? mice. In vitro, Rb1 treatment promoted the expression of arginase‐I (Arg‐I) and macrophage mannose receptor (CD206), two classic M2 macrophages markers, while the expression of iNOS (M1 macrophages) was decreased. Rb1 increased interleukin‐4 (IL‐4) and interleukin‐13 (IL‐13) secretion in supernatant and promoted STAT6 phosphorylation. IL‐4 and/or IL‐13 neutralizing antibodies and leflunomide, a STAT6 inhibitor attenuated the up‐regulation of M2 markers induced by Rb1. In vivo, the administration of Rb1 promoted atherosclerotic lesion stability, accompanied by increased M2 macrophage phenotype and reduced MMP‐9 staining. These data suggested that Rb1 enhanced atherosclerotic plaque stability through promoting anti‐inflammatory M2 macrophage polarization, which is achieved partly by increasing the production of IL‐4 and/or IL‐13 and STAT6 phosphorylation. Our study provides new evidence for possibility of Rb1 in prevention and treatment of atherosclerosis.  相似文献   

6.
7.
8.
Macrophages respond to the Th2 cytokine IL-4 with elevated expression of arachidonate 15-lipoxygenase (ALOX15). Although IL-4 signaling elicits anti-inflammatory responses, 15-lipoxygenase may either support or inhibit inflammatory processes in a context-dependent manner. AMP-activated protein kinase (AMPK) is a metabolic sensor/regulator that supports an anti-inflammatory macrophage phenotype. How AMPK activation is linked to IL-4-elicited gene signatures remains unexplored. Using primary human macrophages stimulated with IL-4, we observed elevated ALOX15 mRNA and protein expression, which was attenuated by AMPK activation. AMPK activators, e.g. phenformin and aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited IL-4-evoked activation of STAT3 while leaving activation of STAT6 and induction of typical IL-4-responsive genes intact. In addition, phenformin prevented IL-4-induced association of STAT6 and Lys-9 acetylation of histone H3 at the ALOX15 promoter. Activating AMPK abolished cellular production of 15-lipoxygenase arachidonic acid metabolites in IL-4-stimulated macrophages, which was mimicked by ALOX15 knockdown. Finally, pretreatment of macrophages with IL-4 for 48 h increased the mRNA expression of the proinflammatory cytokines IL-6, IL-12, CXCL9, and CXCL10 induced by subsequent stimulation with lipopolysaccharide. This response was attenuated by inhibition of ALOX15 or activation of AMPK during incubation with IL-4. In conclusion, limiting ALOX15 expression by AMPK may promote an anti-inflammatory phenotype of IL-4-stimulated human macrophages.  相似文献   

9.
The anti-inflammatory effects of globular adiponectin (gAcrp) are mediated by IL-10/heme oxygenase 1 (HO-1)-dependent pathways. Although full-length (flAcrp) adiponectin also suppresses LPS-induced pro-inflammatory signaling, its signaling mechanisms are not yet understood. The aim of this study was to examine the differential mechanisms by which gAcrp and flAcrp suppress pro-inflammatory signaling in macrophages. Chronic ethanol feeding increased LPS-stimulated TNF-α expression by Kupffer cells, associated with a shift to an M1 macrophage polarization. Both gAcrp and flAcrp suppressed TNF-α expression in Kupffer cells; however, only the effect of gAcrp was dependent on IL-10. Similarly, inhibition of HO-1 activity or siRNA knockdown of HO-1 in RAW264.7 macrophages only partially attenuated the suppressive effects of flAcrp on MyD88-dependent and -independent cytokine signatures. Instead, flAcrp, acting via the adiponectin R2 receptor, potently shifted the polarization of Kupffer cells and RAW264.7 macrophages to an M2 phenotype. gAcrp, acting via the adiponectin R1 receptor, was much less effective at eliciting an M2 pattern of gene expression. M2 polarization was also partially dependent on AMP-activated kinase. flAcrp polarized RAW264.7 macrophages to an M2 phenotype in an IL-4/STAT6-dependent mechanism. flAcrp also increased the expression of genes involved in oxidative phosphorylation in RAW264.7 macrophages, similar to the effect of flAcrp on hepatocytes. In summary, these data demonstrate that gAcrp and flAcrp utilize differential signaling strategies to decrease the sensitivity of macrophages to activation by TLR4 ligands, with flAcrp utilizing an IL-4/STAT6-dependent mechanism to shift macrophage polarization to the M2/anti-inflammatory phenotype.  相似文献   

10.

Background and Aims

Systemic inflammatory response syndrome (SIRS), a major process of severe acute pancreatitis (SAP), usually occurs after various activated proinflammatory cytokines, which are produced by macrophages such as liver macrophages. Macrophages can secrete not only proinflammatory mediators but also inhibitory inflammatory cytokines such as IL-10, leading to two different functional states defined as “polarization”. The main purpose of this study was to demonstrate the polarization of liver macrophages during severe acute pancreatitis and to explore whether the polarization of these activated Liver macrophages could be reversed in vitro.

Methods

Liver macrophages were isolated from rats with acute pancreatitis. These primary culture macrophages were treated with IL-4 or regulatory T cells in vitro to reverse their polarization and was evaluated by measuring M1/M2 marker expression using real time PCR and immunofluorescence staining.

Results

Acute pancreatitis was induced successfully by intra-pancreatic ductal injection of 5% sodium taurocholate. The liver macrophages demonstrated M1 polarization from 4 h to 16 h after the onset of acute pancreatitis. However, after IL-4 or Treg treatment, the polarization of the liver macrophages was reversed as indicated by increased expression of M2 markers and reduced expression of M1 markers. Furthermore, the effect of Treg on modulating macrophage polarization was slightly better than that of IL-4 in vitro.

Conclusion

Liver macrophages, a pivotal cell type in the pathogenesis of SAP, become M1 polarized during pancreatic inflammation. Treatment of these cells with IL-4 and Treg can reverse this activation in vitro. This method of altering macrophage polarization could be a prospective therapy for SAP.  相似文献   

11.

Background

To determine the effects of liposomal targeting of prednisolone phosphate (Lip-PLP) to synovial lining macrophages on M1 and M2 polarization in vitro and during experimental arthritis.

Material and Methods

Experimental arthritis (antigen and immune complex induced) was elicited in mice and prednisolone containing liposomes were given systemically. Synovium was investigated using microarray analysis, RT-PCR and histology. Bone–marrow macrophages were stimulated towards M1 using LPS and IFNγ before treatment by PLP-liposomes. M1 and M2 markers were determined using RT-PCR.

Results

Microarray analysis of biopsies of inflamed synovium during antigen induced arthritis (AIA) showed an increased M1 signature characterized by upregulation of IL-1β, IL-6 and FcγRI starting from day 1 and lasting up until day 7 after arthritis induction. The M2 signature remained low throughout the 7 day course of arthritis. Treatment of AIA with intravenously delivered Lip-PLP strongly suppressed joint swelling and synovial infiltration whereas colloidal gold containing liposomes exclusively targeted the macrophages within the inflamed synovial intima layer. In vitro studies showed that Lip-PLP phagocytosed by M1 macrophages resulted in a suppression of the M1 phenotype and induction of M2 markers (IL-10, TGF-β, IL-1RII, CD163, CD206 and Ym1). In vivo, Lip-PLP treatment strongly suppressed M1 markers (TNF-α, IL-1β, IL-6, IL-12p40, iNOS, FcγRI, Ciita and CD86) after local M1 activation of lining macrophages with LPS and IFN-γ and during experimental AIA and immune complex arthritis (ICA). In contrast, M2 markers were not significantly upregulated in antigen-induced arthritis and down regulated in immune complex arthritis.

Conclusion

This study clearly shows that systemic treatment with PLP-liposomes selectively targets synovial lining macrophages and inhibits M1 activation. In contrast to in vitro findings, PLP-liposomes do not cause a shift of synovial lining macrophages towards M2.  相似文献   

12.
13.
《Cellular signalling》2014,26(10):2249-2258
Sphingosine 1-phosphate (S1P) has been implicated in anti-atherogenic properties of high-density lipoproteins. However, the roles and signaling of S1P in macrophages, the main contributor to atherosclerosis, have not been well studied. Furthermore, pro-inflammatory M1 and anti-inflammatory M2 macrophage phenotypes may influence the development of atherosclerosis. Therefore, we investigated the effects of S1P on macrophage phenotypes, especially on M2 polarization and its signaling in relation to the anti-atherogenic properties of S1P. It was found that S1P induced anti-inflammatory M2 polarization via IL-4 secretion and its signaling, and induced IL-4Rα and IL-2Rγ. In addition, down-stream signalings, such as, stat-6 phosphorylation, SOCS1 induction, and SOCS3 suppression were also observed in macrophages in response to S1P. Furthermore, S1P-induced ERK activation, and the inhibitions of p38 MAPK and JNK were found to be key signals for IL-4 induction. Moreover, the anti-atherogenic effect of S1P in HDL was confirmed by the observation that oxidized LDL-induced lipid accumulation was attenuated in S1P-treated M2 macrophages. Furthermore, the atheroprotective effect of S1P was demonstrated by its anti-apoptotic effect on S1P-treated macrophages. The present study shows that S1P-induced M2 polarization of macrophages could be mediated via IL-4 signaling, and suggests that M2 polarization by S1P is responsible for the anti-atherogenic and atheroprotective properties of high-density lipoproteins in vivo.  相似文献   

14.
15.
Brucella are facultative intracellular Gram-negative coccobacilli that chronically infect humans as well as domestic and wild-type mammals, and cause brucellosis. Alternatively activated macrophages (M2a) induced by IL-4/IL-13 via STAT6 signaling pathways have been frequently described as a favorable niche for long-term persistence of intracellular pathogens. Based on the observation that M2a-like macrophages are induced in the spleen during the chronic phase of B. abortus infection in mice and are strongly infected in vitro, it has been suggested that M2a macrophages could be a potential in vivo niche for Brucella. In order to test this hypothesis, we used a model in which infected cells can be observed directly in situ and where the differentiation of M2a macrophages is favored by the absence of an IL-12-dependent Th1 response. We performed an in situ analysis by fluorescent microscopy of the phenotype of B. melitensis infected spleen cells from intranasally infected IL-12p40-/- BALB/c mice and the impact of STAT6 deficiency on this phenotype. Most of the infected spleen cells contained high levels of lipids and expressed CD11c and CD205 dendritic cell markers and Arginase1, but were negative for the M2a markers Fizz1 or CD301. Furthermore, STAT6 deficiency had no effect on bacterial growth or the reservoir cell phenotype in vivo, leading us to conclude that, in our model, the infected cells were not Th2-induced M2a macrophages. This characterization of B. melitensis reservoir cells could provide a better understanding of Brucella persistence in the host and lead to the design of more efficient therapeutic strategies.  相似文献   

16.
17.
Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13Rα1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm. Biochemical analyses demonstrated that recombinant IL-13Rα1 binds Mac-1 in a purified system and supports Mac-1-mediated cell adhesion. Co-immunoprecipitation experiments revealed that endogenous Mac-1 forms a complex with IL-13Rα1 in solution, and confocal fluorescence microscopy demonstrated that these two receptors co-localize with each other on the surface of macrophages. Moreover, we found that genetic inactivation of Mac-1 promotes IL-13-induced JAK/STAT activation in macrophages, resulting in enhanced polarization along the alternative activation pathway. Importantly, we observed that Mac-1−/− macrophages exhibit increased expression of foam cell differentiation markers including 15-lipoxygenase and lectin-type oxidized LDL receptor-1 both in vitro and in vivo. Indeed, we found that Mac-1−/−LDLR−/− mice develop significantly more foam cells than control LDLR−/− mice, using an in vivo model of foam cell formation. Together, our data establish for the first time a molecular mechanism by which Mac-1 regulates the signaling activity of IL-13 in macrophages. This newly identified IL-13Rα1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future.  相似文献   

18.
Lung injury is one of the leading causes of death in sepsis. Abietic acid (AA) has demonstrated anti-inflammatory and bacteriostatic properties. Herein, we established a mouse model of sepsis by cecal ligation and puncture, and intraperitoneally injected AA to treat. Lung injury was assessed by H&E staining and the inflammation in bronchoalveolar lavage fluid (BALF) were assessed by counting the number of inflammatory cells and detecting the content of inflammatory factors. Meanwhile, we also designed to study the effect of AA on lipopolysaccharide (LPS)-induced inflammatory response and macrophage marker gene expression in RAW264.7 cells in vitro. In this study, we found that AA inhibited LPS-induced secretion of inflammatory mediators (IL-1β, TNF-α, IL-6 and MIP-2), and decreased the expression of M1 macrophage e markers (CD16 and iNOS) and p-p65 protein, while increased the expression of M2 macrophage markers (CD206 and Arg-1) in RAW264.7 cells in vitro. In vivo, the therapy of AA not only rescued septic animals, but also attenuated lung injury in sepsis mice. Moreover, AA decreased the number of total cells, neutrophils and macrophages, the conceration of total protein, and the levels of inflammatory mediators in BALF of sepsis mice. Further, we found that AA inhibited M1 macrophage polarization and blocked nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in BALF of sepsis mice. In conclusion, Abietic acid attenuates sepsis-induced lung injury, and its mechanism may be related to reducing inflammation by inhibiting NF-κB signaling to inhibit M1 macrophage polarization.  相似文献   

19.
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN; CD209) is a human pathogen-attachment C-type lectin with no obvious murine ortholog and for which ligation leads to enhanced anti-inflammatory cytokine release and altered proinflammatory cytokine production. Although induced by IL-4 in monocytes and considered as a DC marker, DC-SIGN expression on human APCs under homeostatic conditions is so far unexplained. We report in this study that M-CSF enhances DC-SIGN expression on in vitro derived anti-inflammatory macrophages and that M-CSF mediates the induction of DC-SIGN by fibroblast- and tumor cell-conditioned media. The M-CSF-inducible DC-SIGN expression along monocyte-to-macrophage differentiation is dependent on JNK and STAT3 activation, potentiated by STAT3-activating cytokines (IL-6, IL-10), and abrogated by the M1-polarizing cytokine GM-CSF. In pathological settings, DC-SIGN expression is detected in tumor tissues and on ex vivo-isolated CD14(+) CD163(+) IL-10-producing tumor-associated macrophages. Importantly, DC-SIGN Abs reduced the release of IL-10 from macrophages exposed to Lewis(x)-expressing SKBR3 tumor cells. These results indicate that DC-SIGN is expressed on both wound-healing (IL-4-dependent) and regulatory (M-CSF-dependent) alternative (M2) macrophages and that DC-SIGN expression on tumor-associated macrophages might help tumor progression by contributing to the maintenance of an immunosuppressive environment.  相似文献   

20.

Background

Macrophages play a pivotal role in atherosclerotic plaque development. Recent evidence has suggested the glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, can attenuate pro-inflammatory responses in macrophages. We hypothesized that liraglutide could limit atherosclerosis progression in vivo via modulation of the inflammatory response.

Methods

Human THP-1 macrophages and bone marrow-derived macrophages, from both wild-type C57BL/6 (WT) and apolipoprotein E null mice (ApoE?/?) were used to investigate the effect of liraglutide on the inflammatory response in vitro. In parallel, ApoE?/? mice were fed a high-fat (60% calories from fat) high-cholesterol (1%) diet for 8 weeks to induce atherosclerotic disease progression with/without daily 300 μg/kg liraglutide administration for the final 6 weeks. Macrophages were analysed for MΦ1 and MΦ2 macrophage markers by Western blotting, RT-qPCR, ELISA and flow cytometry. Atherosclerotic lesions in aortae from ApoE?/? mice were analysed by en face staining and monocyte and macrophage populations from bone marrow derived cells analysed by flow cytometry.

Results

Liraglutide decreased atherosclerotic lesion formation in ApoE?/? mice coincident with a reduction in pro-inflammatory and increased anti-inflammatory monocyte/macrophage populations in vivo. Liraglutide decreased IL-1beta in MΦ0 THP-1 macrophages and bone marrow-derived macrophages from WT mice and induced a significant increase in the MΦ2 surface marker mannose receptor in both MΦ0 and MΦ2 macrophages. Significant reduction in total lesion development was found with once daily 300 μg/kg liraglutide treatment in ApoE?/? mice. Interestingly, liraglutide inhibited disease progression at the iliac bifurcation suggesting that it retards the initiation and development of disease. These results corresponded to attenuated MΦ1 markers (CCR7, IL-6 and TNF-alpha), augmented MΦ2 cell markers (Arg-1, IL-10 and CD163) and finally decreased MΦ1-like monocytes and macrophages from bone marrow-derived cells.

Conclusions

This data supports a therapeutic role for liraglutide as an atheroprotective agent via modulating macrophage cell fate towards MΦ2 pro-resolving macrophages.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号