首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of Na+-independent Mg2+ efflux exist in erythrocytes: (1) Mg2+ efflux in sucrose medium and (2) Mg2+ efflux in high Cl media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na+-independent Mg2+ efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K+,Cl- and Na+,K+,Cl-symport, Na+/H+-, Na+/Mg2+-, Na+/Ca2+- and K+(Na+)/H+ antiport, Ca2+-activated K+ channel and Mg2+ leak flux. We suggest that, in choline Cl medium, Na+-independent Mg2+ efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg2+ efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg2+ to the same degree. The Kd value for inhibition of [14C]choline efflux and for inhibition of Mg2+ efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg2+ efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg2+ efflux was reduced to the same degree by these inhibitors as was the [14C]choline efflux.  相似文献   

2.
The components of magnesium efflux in squid axons have been studied under internal dialysis and voltage clamp conditions. The present report rules out the existence of an ATP-dependent, Na0- and Mg0-independent Mg2+ efflux (ATP-dependent Mg2+ pump) leaving the Mg2+---Na+ exchange system as the only mechanism for Mg2+ extrusion. The main features of the Mg2+ efflux are: (1) The efflux is completely dependent on ATP. (2) The efflux can be activated either by external Na+ (forward Mg2+---Na+ exchange) or external Mg2+ (Mg2+---Mg2+ exchange). (3) The mobility of the Mg2+ exchanger in the Na0+-loaded form is greater than that in the Mg2+-loaded one. (4) In variance with the Na+---Ca2+ exchange mechanism, Mg2+---Mg2+ exchange is not activated by external monovalent cations. (5) ATPγS replaces ATP in activating Mg2+---Na+ exchange suggesting that a phosphorylation/dephosphorylation process regulates this transport mechanism.  相似文献   

3.
We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25°C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Δ[Mg2+]it) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Δ[Mg2+]it after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 μM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from ∼0.9 mM to ∼2.5 mM in a period of 5-8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to ∼50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for ≥90 min. The initial Δ[Mg2+]it was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59-85 min), a significant decrease in the initial Δ[Mg2+]it (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0-10.5 mM during the time required for the initial Δ[Mg2+]it measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (∼40 mM). Normalization of intracellular pH using 10 μM nigericin, a H+ ionophore, did not reverse the inhibition of the Mg2+ efflux. From these results, it seems likely that a decrease in ATP below the threshold of rigor cross-bridge formation (∼0.4 mM estimated indirectly in the this study), rather than elevation of [Na+]i or intracellular acidosis, inhibits the Mg2+ efflux, suggesting the absolute necessity of ATP for the Na+/Mg2+ exchange.  相似文献   

4.
Mammary epithelial cells (HC11) chronically adapted to grow in a low‐magnesium (0.05 mM vs. 0.5 mM) or in a high‐magnesium (40 mM) medium were used to investigate on the mechanisms of cell magnesium transport under conditions of non‐physiological magnesium availability. Magnesium influx was higher in low‐magnesium cells compared to control or high‐magnesium cells, whereas magnesium efflux was higher in high‐magnesium cells compared to control and low‐magnesium cells. Magnesium efflux was partially inhibited by imipramine, inhibitor of the Na+/Mg2+ exchange. Using a monoclonal antibody detecting a ~70 kDa protein associated with Na+/Mg2+ exchange activity, we found that the expression levels of this protein were proportional to magnesium efflux capacity, that is, high‐magnesium cells > control cells > low‐magnesium cells. As for magnesium influx, this was abolished by Co(III)hexaammine, inhibitor of magnesium channels. Surprisingly, we found that cells grown in low magnesium upregulated mRNA for the magnesium channel TRPM6, but not for other channels like TRPM7 or MagT1. TRPM6 mRNA was also rapidly upregulated or downregulated in HC11 cells deprived of magnesium or in low‐magnesium cells re‐added with magnesium, respectively. TRPM6 protein levels, as assessed by Western blot and immunofluorescence, underwent similar changes under comparable conditions. We propose that mammary epithelial cells adapt to decreased magnesium availability by upregulating magnesium influx via TRPM6, and counteract increased magnesium availability by increasing magnesium efflux primarily via Na+/Mg2+ exchange. These results show, for the first time, that TRPM6 contributes to regulating magnesium influx in mammary epithelial cells, similar to what is known for intestine and kidney. J. Cell. Physiol. 222: 374–381, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Involvement of ERK1/2 and p38 in Mg2+ accumulation in liver cells   总被引:10,自引:0,他引:10  
Activation of PKC signaling induces Mg2+ accumulation in liver cells. To test the hypothesis that PKC induces Mg2+ accumulation via MAPKs activation, hepatocytes were incubated in the presence of PD98059 and SB202190 as specific inhibitors of ERK1/2 and p38, respectively, and stimulated for Mg2+ accumulation by addition of PMA or OAG. Accumulation of Mg2+ within the cells was measured by atomic absorbance spectrophotometry in the acid extract of cell pellet. The presence of either inhibitor completely abolished Mg2+ accumulation irrespective of the dose of agonist utilized while having no discernible effect on β -adrenoceptor mediated Mg2+ extrusion. A partial inhibition on α 1-adrenoceptor mediated Mg2+ extrusion was observed only in cells treated with PD98059. To confirm the inhibitory effect of PD98509 and SB202190, total and basolateral liver plasma membrane vesicles were purified in the presence of either MAPK inhibitor during the isolation procedure. Consistent with the data obtained in intact cells, liver plasma membrane vesicles purified in the presence of PD98509 or SB202190 lost the ability to accumulate Mg2+in exchange for intra-vesicular entrapped Na+ while retaining the ability to extrude entrapped Mg2+ in exchange for extra-vesicular Na+. These data indicate that ERK1/2 and p38 are involved in mediating Mg2+ accumulation in liver cells following activation of PKC signaling. The absence of a detectable effect of either inhibitor on β -adrenoceptor induced, Na+-dependent Mg2+ extrusion in intact cells and in purified plasma membrane vesicles further support the hypothesis that Mg2+ extrusion and accumulation occur through distinct and differently regulated transport mechanisms.  相似文献   

6.
The Na+/Mg2+ exchanger represents the main Mg2+ extrusion mechanism operating in mammalian cells including hepatocytes. We have previously reported that this exchanger, located in the basolateral domain of the hepatocyte, promotes the extrusion of intravesicular trapped Mg2+ for extravesicular Na+ with ratio 1. This electrogenic exchange is supported by the accumulation of tetraphenyl-phosphonium within the vesicles at the time when Mg2+ efflux occurs. In this present study, the role of extra- and intra-vesicular Cl? on the Na+/Mg2+ exchange ratio was investigated. The results reported here suggest that Cl? ions are not required for the Na+ to Mg2+ exchange to occur, but the stoichiometry ratio of the exchanger switches from electrogenic (1Na in + :1 Mg out 2+ ) in the presence of intravesicular Cl? to electroneutral (2Na in + :1 Mg out 2+ ) in their absence. In basolateral liver plasma membrane vesicles loaded with MgCl2 labeled with 36Cl?, a small but significant Cl? efflux (~30 nmol Cl?/mg protein/1 min) is observed following addition of NaCl or Na-isethionate to the extravesicular medium. Both Cl? and Mg2+ effluxes are inhibited by imipramine but not by amiloride, DIDS, niflumic acid, bumetanide, or furosemide. In vesicles loaded with Mg-gluconate and stimulated by Na-isethionate, an electroneutral Mg2+ extrusion is observed. Taken together, these results suggest that the Na+/Mg2+ exchanger can operate irrespective of the absence or the presence of Cl? in the extracellular or intracellular environment. Changes in trans-cellular Cl? content, however, can affect the modus operandi of the Na+/Mg2+ exchanger, and consequently impact "cellular" Na+ and Mg2+ homeostasis as well as the hepatocyte membrane potential.  相似文献   

7.
The intracellular free Na+ concentration ([Na+]i) increases during muscarinic stimulation in salivary acinar cells. The present study examined in rat sublingual acini the role of extracellular Mg2+ in the regulation of the stimulated [Na+]i increase using the fluorescent sodium indicator benzofuran isophthalate (SBFI). The muscarinic induced rise in [Na+]i was approximately 4-fold greater in the absence of extracellular Mg2+. When Na+ efflux was blocked by the Na+,K+-ATPase inhibitor ouabain, the stimulated [Na+]i increase was comparable to that seen in an Mg2+-free medium. Moreover, ouabain did not add further to the stimulated [Na+]i increase in an Mg2+-free medium suggesting that removal of extracellular Mg2+ may inhibit the Na+ pump. In agreement with this assumption, ouabain-sensitive Na+ efflux and rubidium uptake were reduced by extracellular Mg2+ depletion. Our results suggest that extracellular Mg2+ may regulate [Na+]i in sublingual salivary acinar cells by modulating Na+ pump activity.  相似文献   

8.
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCα.In non-Mg2+-loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+-loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCα or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+-loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+-loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl. Mg2+-loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl]i.  相似文献   

9.
Na+-H+ exchange and passive Na+ flux were investigated in cardiac sarcolemmal vesicles as a function of changing the ionic composition of the reaction media. The inclusion of EGTA in the reaction medium resulted in a potent stumulation of Na+ uptake by Na+-H+ exchange. It was found that millimolar concentrations of Mg2+ and Li+ were capable of inhibiting Na+-H+ exchange by 80%. One mechanism by which these ions may inhibit intravesicular Na+ accumulation by Na+-H+ exchange is via an increase in Na+ efflux. An examination of Na+ efflux kinetics from vesicles pre-loaded with Na+ revealed that Na+, Ca2+, Mg2+ and Li+ could stimulate Na+ efflux. Na+-H+ exchange was potently inhibited by an organic divalent cation, dimenthonium, which screens membrane surface charge. This would suggest that Na+-H+ exchange occurs in the diffuse double layer region of cardiac sarcolemma and this phenomenon is distinctly different from other Na+ transport processes. The results in this study indicate that in addition to a stimulation of Na+ efflux, the inhibitory effects of Mg2+, Ca2+ and Li+ on Na+-H+ exchange may also involve a charge dependent screening of Na+ interactions with the membrane.  相似文献   

10.
Characterization of a H Efflux from Suspension-cultured Plant Cells   总被引:6,自引:4,他引:2       下载免费PDF全文
A readily assayed H+ efflux from sycamore (Acer pseudoplatanus), rye (Lolium perenne), and bean (Phaseolus vulgaris cultivars Red Kidney and Small White) suspension-cultured cells has been detected and partially characterized. The H+ efflux has been shown to require a source of energy, to be significantly stimulated by Na+ and Mg2+ but not by K+ and Ca2+, and to have a pH optimum at 7. The study of this H+ efflux was undertaken because the characteristics of auxin-induced growth and of H+-induced growth are sufficiently similar to suggest that a H+ efflux may be an intermediate in the mechanism of auxin-induced growth. However, the H+ efflux from these suspension-cultured cells was found to be insensitive to exogenously added hormones.  相似文献   

11.
Using a newly developed, extracellular vibrating electrode, we studied the ionic composition of the current pulses which traverse the developing Pelvetia embryo. External Na+, Mg2+, or SO42?, are not needed for the first 20 min of pulsing. In fact, lowering external Na+ or Mg2+ (or K+) actually stimulates pulsing. Since tracer studies show that Ca2+ entry is speeded by Na+, Mg2+, or K+ reduction, these findings suggest that Ca2+ entry triggers pulsing. A sevenfold reduction in external Cl? raises pulse amplitudes by 60%. Moreover, Cl? is the only major ion with an equilibrium potential near the pulse reversal potential. These facts suggest that Cl? efflux carries much of the “inward” current. We propose a model for pulsing in which increased Ca2+ within the growing tip opens Cl? channels. The resulting Cl? efflux slightly depolarizes the membrane and thus drives a balancing amount of K+ out. Thus, the pulses release KCl and serve to relieve excess turgor pressure. By letting Ca2+ into the growing tip, they should also strengthen the transcytoplasmic electrical field which is postulated to pull growth components toward this tip.  相似文献   

12.
Previous work showed that in hamster red cells the amiloride-sensitive (AS) Na+ influx of 0.8 mmol/liter cells/hr is not mediated by Na-H exchange as in other red cells, but depends upon intracellular Mg2+ and can be increased by 40-fold by loading cells with Mg2+ to 10 mm. The purpose of this study was to verify the connection of AS Na+ influx with Na-dependent, amiloride-sensitive Mg2+ efflux and to utilize AS Na+ influx to explore that pathway.Determination of unidirectional influx of Na+ and net loss of Mg2+ in parallel sets of cells showed that activation by extracellular [Na+] follows a simple Michaelis-Menten relationship for both processes with a K m of 105–107 mm and that activation of both processes is sigmoidally dependent upon cytoplasmic [Mg2+] with a [Mg2+]0.5 of 2.1–2.3 mm and a Hill coefficient of 1.8. Comparison of Vmax for both sets of experiments indicated a stoichiometry of 2 Na: l Mg. Amiloride inhibits Na+ influx and Mg2+ extrusion in parallel (K i = 0.3 mm). Like Mg2+ extrusion, amiloride-sensitive Na+ influx shows an absolute requirement for cytoplasmic ATP and is increased by cell swelling. Hence, amiloride-sensitive Na+ influx in hamster red cells appears to be through the Na-Mg exchange pathway.There was no amiloride-sensitive Na+ efflux in hamster red cells loaded with Na+ and incubated with high [Mg2+] in the medium with or without external Na+, nor with ATP depletion. Hence, this is not a simple Na-Mg exchange carrier.  相似文献   

13.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

14.
The adenosine triphosphatase (ATPase) system in worker honey-bee brains showed an increased activity of 57 per cent in Na+K+ATPase and 63 per cent in Mg2+ATPase from adult emergence to 7 days post-emergence. Mg2+ATPase activity remained about the same throughout the remainder of adult life, while Na+K+ATPase remained the same until the sixth week, when a decline occurred. The percentage mortality of the bees exceeded 90 per cent at the time of decline of Na+K+ATPase. The in vitro inhibition of Mg2+ATPase and Na+K+ATPase by 10 μM DDT was between 40 and 50 per cent and about 20 per cent, respectively. A somewhat greater sensitivity to DDT was determined in brains of older honey-bees.  相似文献   

15.
Isolated hepatocytes in physiological [Na+] 0 tightly maintain [Mg2+] i . Upon β-adrenergic stimulation or in the presence of permeable cAMP, hepatocytes release 5–10% (1–3 mM Mg2+) of their total Mg2+ content. However, isolated basolateral liver plasma membranes (bLPM), release Mg2+ in the presence of [Na+] o even in the absence of catecholamine stimulation. The data indicate that a physiological brake for Mg2+ efflux is present in the hepatocyte and is removed upon cellular signaling. In contrast, this regulation “brake” is absent in purified bLPM thus rendering them fully active. The present study was carried out to reconstruct the missing regulatory component. Activation of Mg2+ extrusion in intact cells is consistent with cAMP dependent phosphorylation of the transporter or a regulatory protein. Treatment of bLPM with a non-specific phosphatase such as alkaline phosphatase (AP), decreased Mg2+ efflux by 70% compared to untreated bLPM. When AP-treated bLPM were loaded with protein kinase A (PKA), and stimulated with permeable cAMP, Mg2+ transport fully recovered. These data suggest that phosphorylation of the Na+/Mg2+ exchanger or a nearby protein activates the Mg2+ transport mechanism in hepatocytes.  相似文献   

16.
Synaptosomes isolated from sheep brain cortex accumulate Ca2+, Sr2+ and Mg2+ when incubated in isosmotic sucrose media containing 5 mM of either of these cations. The maximal levels of cations retained per mg of protein are 100 nmol of Ca2+, 85 nmol of Mg2+ and 80 nmol of Sr2+. The loss of Ca2+ or Sr2+ from the preloaded synaptosomes is increased by monovalent cations in the following order: Na+> K+ > Li+> choline, whereas for the loss of Mg2+ this order is different: K+ > Na+ > Li ~ choline. The efflux of Ca2+ or Sr2+ induced by monovalent cations decreases as the temperature is lowered and it is nearly abolished at 0°C, whereas the efflux of Mg2+ is much less influenced by temperature. The results suggest that the mechanism of exchange of Ca2+ for Na+ in synaptosomes operates similarly for Sr2+, but not for Mg2+.  相似文献   

17.
Transcellular Mg2+ transport across epithelia, involving both apical entry and basolateral extrusion, is essential for magnesium homeostasis, but molecules involved in basolateral extrusion have not yet been identified. Here, we show that CNNM4 is the basolaterally located Mg2+ extrusion molecule. CNNM4 is strongly expressed in intestinal epithelia and localizes to their basolateral membrane. CNNM4-knockout mice showed hypomagnesemia due to the intestinal malabsorption of magnesium, suggesting its role in Mg2+ extrusion to the inner parts of body. Imaging analyses revealed that CNNM4 can extrude Mg2+ by exchanging intracellular Mg2+ with extracellular Na+. Furthermore, CNNM4 mutations cause Jalili syndrome, characterized by recessive amelogenesis imperfecta with cone-rod dystrophy. CNNM4-knockout mice showed defective amelogenesis, and CNNM4 again localizes to the basolateral membrane of ameloblasts, the enamel-forming epithelial cells. Missense point mutations associated with the disease abolish the Mg2+ extrusion activity. These results demonstrate the crucial importance of Mg2+ extrusion by CNNM4 in organismal and topical regulation of magnesium.  相似文献   

18.
Pyroglutamate, also known as 5-oxoproline, is a structural analog of proline. This amino acid derivative is a byproduct of glutathione metabolism, and is reabsorbed efficiently in kidney by Na+-coupled transport mechanisms. Previous studies have focused on potential participation of amino acid transport systems in renal reabsorption of this compound. Here we show that it is not the amino acid transport systems but instead the Na+-coupled monocarboxylate transporter SLC5A8 that plays a predominant role in this reabsorptive process. Expression of cloned human and mouse SLC5A8 in mammalian cells induces Na+-dependent transport of pyroglutamate that is inhibitable by various SLC5A8 substrates. SLC5A8-mediated transport of pyroglutamate is saturable with a Michaelis constant of 0.36 ± 0.04 mM. Na+-activation of the transport process exhibits sigmoidal kinetics with a Hill coefficient of 1.8 ± 0.4, indicating involvement of more than one Na+ in the activation process. Expression of SLC5A8 in Xenopuslaevis oocytes induces Na+-dependent inward currents in the presence of pyroglutamate under voltage-clamp conditions. The concentration of pyroglutamate necessary for induction of half-maximal current is 0.19 ± 0.01 mM. The Na+-activation kinetics is sigmoidal with a Hill coefficient of 2.3 ± 0.2. Ibuprofen, a blocker of SLC5A8, suppressed pyroglutamate-induced currents in SLC5A8-expressing oocytes; the concentration of the blocker necessary for causing half-maximal inhibition is 14 ± 1 μM. The involvement of SLC5A8 can be demonstrated in rabbit renal brush border membrane vesicles by showing that the Na+-dependent uptake of pyroglutamate in these vesicles is inhibitable by known substrates of SLC5A8. The Na+ gradient-driven pyroglutamate uptake was stimulated by an inside-negative K+ diffusion potential induced by valinomycin, showing that the uptake process is electrogenic.  相似文献   

19.
Lutoids represent a lysosomal microvacuolar compartment of rubber-tree (Hevea brasiliensis) latex. We observed acidification of isolated vesicles after imposing an outward Mg2+ diffusion gradient and dissipation of a preformed pH gradient in the presence of exogenous Mg2+. These results suggest the presence of a Mg2+/H+ antiporter. The maximum Mg2+/H+ exchange rate was observed at pH 8.5. The Km values for Mg2+ (2.6 mm) were identical for both influx and efflux experiments. When membrane potential was clamped at zero with K+ and valinomycin, the response of the membrane potential probe oxonol VI showed that the Mg2+/H+ exchange was electroneutral. Mg2+/H+ exchange was inhibited by amiloride and imipramine. Both the inhibiting concentration range and the Km for Mg2+ are similar to those reported for the Mg2+/2Na+ antiporter in animals cell. These data are consistent with the existence of a Mg2+/2H+ antiporter in a plant tonoplast.  相似文献   

20.
Addition of LiCl (1–25 mM) to serum-free cultures of MHA hamster thymocytes, lymph node cells, or splenocytes stimulated with concanavalin A had a biphasic effect on [3H]thymidine incorporation. These concentrations of LiCl enhanced stimulation of [3H]thymidine incorporation by suboptimal levels of concanavalin A but inhibited stimulation of optimal and supraoptimal concentrations of concanavalin A. This effect was specific for Li+ since it was not observed when similar concentrations of Na+, K+, or Mg2+ were added to cultures stimulated by concanavalin A. The inhibitory effect of LiCl on concanavalin A stimulation was not reversed by addition of Na+, Ca2+, Mg2+, or Ca2+ + Mg2+ to the cultures. Significant reversal of LiCl inhibition of stimulation was observed when KCl was added to the cultures. However none of the ions tested blocked the Li-induced enhancement of [3H]thymidine incorporation in the presence of suboptimal concentrations of concanavalin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号