首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
2.
3.
4.
5.
Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs.  相似文献   

6.
7.
8.
9.
10.
Thank you     
The importance of long non‐coding RNAs (lncRNAs) in plant development has been established, but a systematic analysis of lncRNAs expressed during pollen development and fertilization has been elusive. We performed a time series of RNA‐seq experiments at five developmental stages during pollen development and three different time points after pollination in Brassica rapa and identified 12 051 putative lncRNAs. A comprehensive view of dynamic lncRNA expression networks underpinning pollen development and fertilization was provided. B. rapa lncRNAs share many common characteristics of lncRNAs: relatively short length, low expression but specific in narrow time windows, and low evolutionary conservation. Gene modules and key lncRNAs regulating reproductive development such as exine formation were uncovered. Forty‐seven cis‐acting lncRNAs and 451 trans‐acting lncRNAs were revealed to be highly coexpressed with their target protein‐coding genes. Of particular importance are the discoveries of 14 lncRNAs that were highly coexpressed with 10 function‐known pollen‐associated coding genes. Fifteen lncRNAs were predicted as endogenous target mimics for 13 miRNAs, and two lncRNAs were proved to be functional target mimics for miR160 after experimental verification and shown to function in pollen development. Our study provides the systematic identification of lncRNAs during pollen development and fertilization in B. rapa and forms the foundation for future genetic, genomic, and evolutionary studies.  相似文献   

11.
12.
13.
14.
Jiang  Lan  Yang  Qiao  Yu  Jianqiu  Liu  Xuanzhen  Cai  Yansen  Niu  Lili  Li  Jing 《Functional & integrative genomics》2021,21(5-6):543-555

Long non-coding RNA (lncRNA) represents a new direction to identify expression profiles and regulatory mechanisms in various organisms. Here, we report the first dataset of lncRNAs of the golden snub-nosed monkey (GSM), including 12,557 putative lncRNAs identified from seven organs. Compared with mRNA, GSM lncRNA had fewer exons and isoforms, and longer length. LncRNA showed more obvious tissue-specific expression than mRNA. However, for the top ten most abundant genes in each organ, mRNAs expression was more tissue-specific than lncRNAs. By identification of specifically expressed lncRNAs and mRNAs in each organ, it indicates that the expression of SEG-lncRNA (specifically expressed lncRNA) and SEG-mRNA (specifically expressed mRNA) had high correlation. In particular, combined our lncRNA and mRNA data, we identified 92 heart SEG-lncRNAs targeted ten mRNA genes in the oxidative phosphorylation pathway and upregulated the expression of these target genes such as ND4, ATP6, and ATP8. These may contribute to GSM adaption to its high-elevation environment. We also identified 171 liver SEG-lncRNAs, which targeted 27 genes associated with the metabolism of xenobiotics and leaded to high expression of these target genes in liver. These lncRNAs may play important roles in GSM adaptation to a folivory diet.

  相似文献   

15.
Long non-coding RNAs (lncRNAs) are of particular interest because of their contributions to many biological processes. Here, we present the genome-wide identification and characterization of putative lncRNAs in a global insect pest, Plutella xylostella. A total of 8096 lncRNAs were identified and classified into three groups. The average length of exons in lncRNAs was longer than that in coding genes and the GC content was lower than that in mRNAs. Most lncRNAs were flanked by canonical splice sites, similar to mRNAs. Expression profiling identified 114 differentially expressed lncRNAs during the DBM development and found that majority were temporally specific. While the biological functions of lncRNAs remain uncharacterized, many are microRNA precursors or competing endogenous RNAs involved in micro-RNA regulatory pathways. This work provides a valuable resource for further studies on molecular bases for development of DBM and lay the foundation for discovery of lncRNA functions in P. xylostella.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号