首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MircroRNA (miRNA)是一段长度约为22个nt的小型非编码RNA,广泛存在于真核生物中,具有调节基因表达的作用。对miRNA的鉴定、功能分析和调控机理研究已成为当今生物领域的热点。miR-302/367cluster属于胚胎干细胞特异性细胞周期调控miRNAs家族成员(embryonic stem cell-specific cell cycle-regulating family of microRNAs,ESCC miRNAs),通常由5个成员miR-302a、miR-302b、miR-302c、miR-302d及miR-367组成,大多分布在脊椎动物中。研究表明,该miRNAs簇对细胞多种生理过程起重要调控作用,如人胚胎干细胞(hESCs)多能性的维持、自我更新等。本研究概述了miRNA的合成及作用机理,ESCC miRNAs促进体细胞再程序化,并总结了miR-302/367 cluster在细胞周期调控、表观遗传修饰及一些细胞信号转导途径中的作用,为采用该类miRNAs诱导体细胞再程序化为iPS细胞(Induced pluripotent stem cells)提供一定的理论基础。  相似文献   

2.
Epigenetic reprogramming by embryonic stem cell-specific miR-302/367 cluster has shown some tumor suppressive effects in cancer cells of different tissues such as skin, colon, and cervix. Vitamin C has been known as a reprogramming enhancer of human and mouse somatic cells. In this study, first we aimed to investigate whether exogenous induction of miR-302/367 in breast cancer cells shows the same tumor suppressive effects previously observed in other cancer cells lines, and whether vitamin C can enhance reprogramming of breast cancer cells and also improve the tumor suppressive function of miR-302/367 cluster. Overexpression of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 breast cancer cells upregulated expression of miR-302/367 members and also some core pluripotency factors including OCT4A, SOX2 and NANOG, induced mesenchymal to epithelial transition, suppressed invasion, proliferation, and induced apoptosis in the both cell lines. However, treatment of the miR-302/367 transfected cells with vitamin C suppressed the expression of pluripotency factors and augmented the tumorigenicity of the breast cancer cells by restoring their proliferative and invasive capacity and compromising the apoptotic effect of miR-302/367. Supplementing the culture medium with vitamin C downregulated expression of TET1 gene which seems to be the reason behind the negative impact of vitamin C on the reprogramming efficiency of miR-302/367 cluster and its anti-tumor effects. Therefore application of vitamin C may not always serve as a reprogramming enhancer depending on its switching function on TET1. This phenomenon should be carefully considered when considering a reprogramming strategy for tumor suppression.  相似文献   

3.
4.
5.
6.
7.
8.
MicroRNA-302/367(miR-302/367)发现于2003年,是一类长度在21~22 nt的miRNA簇,与多能性干细胞自我更新及多向分化有重要关系.在体细胞向多能性干细胞重编程中具有重要作用. miR-302/367簇中各miRNA具有相对保守的种子区及靶基因,主要通过抑制靶基因蛋白质的翻译,从而促进间质-上皮转化(mesenchymal epithelial transition, MET)、抑制细胞周期、调控细胞分化相关基因及表观遗传水平等方式促进体细胞向多能性细胞重编程.本文对miR 302/367的发现、结构、miR 302/367在多能性细胞中的作用及在体细胞向多能性干细胞重编程中的作用及其机理等做一综述.  相似文献   

9.
Ever since the technique of coaxing ordinary skin cells into becoming pluripotent stem cells (iPSCs) has been developed, which have the potential to become any cell or tissue in the body, efforts were made to improve the approach because some major challenges. Increasing evidence suggests that several microRNAs (miRNAs) are involved in early embryonic development and embryonic stem cell formation, known as embryonic stem cell (ESC)-specific miRNAs, particularly the miR-302 family. We summarized here a novel approach to generate iPSCs by using miR-302 and its related miRNAs such as miR-367. The development of this miR-302/367-mediated iPSC (termed mirPSC) may provide tools to deal with the obstacles facing some current iPSC reprogramming methods. The mechanism by which miR-302/367 induce iPSC reprogramming is proposed.  相似文献   

10.
11.
12.
The miR-302-367 cluster is specifically expressed in human embryonic stem cells and has been shown to convert human somatic cells into induced pluripotent stem cells. Here, we investigated the role of the miR-302-367 cluster in cervical carcinoma. The cluster was not endogenously expressed in cervical cancer cells, and its ectopic expression did not reprogram the cervical cancer cells to an embryonic stem cell-like state. However, ectopic expression of the miR-302-367 cluster in HeLa and SiHa cervical cancer cells inhibited cell proliferation and tumor formation by blocking the G1/S cell cycle transition. We identified a new cell cycle regulatory pathway in which the miR-302-367 cluster directly down-regulated both cyclin D1 and AKT1 and indirectly up-regulated p27Kip1 and p21Cip1, leading to the suppression of cervical cancer cell proliferation. Our findings suggest that the miR-302-367 cluster may be used as a therapeutic reagent for the treatment of cervical carcinoma.  相似文献   

13.
Inflammation and endothelial dysfunction are important participants and drivers in atherosclerosis. NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation and the resulting pyroptosis are involved in the initiation and vicious circle of chronic inflammation, thus playing an indispensable role in atherosclerosis. Accordingly, blocking the activation of NLRP3 inflammasome may be a promising treatment strategy to blunt the progression of atherosclerosis. In this study, it was demonstrated that miR-302c-3p exerted anti-pyroptosis effects by directly targeting NLRP3 in vivo and in vitro. In brief, the expression of miR-302c-3p was down-regulated whereas the expression of NLRP3 was up-regulated in human plaques and in vitro pyroptosis model of endothelial cells. Overexpression of miR-302c-3p suppressed endothelial cell pyroptosis by targeting specific sites of NLRP3. By comparison, down-regulation of endogenous miR-302c-3p led to the opposite results, which were reversed by silencing the expression of NLRP3. Finally, the up-regulation of miR-302c-3p inhibited the inflammation and pyroptosis of atherosclerosis mouse model. In conclusion, miR-302c-3p may be a powerful and attractive target for suppressing endothelial inflammation and pyroptosis, providing a novel strategy for preventing or alleviating the progression of atherosclerosis.  相似文献   

14.
王春生  张志人  朴善花  安铁洙 《遗传》2012,34(12):1545-1550
microRNA是调控基因转录后水平的一类长度约为22个核苷酸的非编码小分子RNA。大量研究证实, microRNAs广泛分布于真核生物, 其在细胞的分化发育、生长代谢等各种活动中都起着重要的调节作用。诱导多能性干细胞(Induced pluripotent stem cell, iPS)是将体细胞诱导成为具有胚胎干细胞性质的多潜能干细胞。iPS过程的核心为体细胞表观遗传状态发生重编程, 因此, 探明体细胞重编程机制对建立完善的iPS技术具有重要理论和实际意义。利用病毒载体将Oct4、Sox2、Klf4和c-Myc等因子导入体细胞的方法已不断发展, 但“基因组整合”及原癌基因的参与增加了诱导细胞的致癌率。随着使用腺病毒、质粒或蛋白诱导等“非整合型”方法及L-myc的替换均可获得具有多潜能性的干细胞, 癌变的风险大大降低。但其发生的理论机制仍不十分清楚。最近的研究证实, microRNAs影响体细胞的重编程过程, 特别是miR302/367、miR200、miR-34和miR290/295等家族的microRNAs在体细胞诱导为iPS过程中发挥重要作用。文章就近年microRNA在诱导多能干细胞中的作用进行综述。  相似文献   

15.
Global demethylation is required for early zygote development to establish stem cell pluripotency, yet our findings reiterate this epigenetic reprogramming event in somatic cells through ectopic introduction of mir-302 function. Here, we report that induced mir-302 expression beyond 1.3-fold of the concentration in human embryonic stem (hES) H1 and H9 cells led to reprogramming of human hair follicle cells (hHFCs) to induced pluripotent stem (iPS) cells. This reprogramming mechanism functioned through mir-302-targeted co-suppression of four epigenetic regulators, AOF2 (also known as KDM1 or LSD1), AOF1, MECP1-p66 and MECP2. Silencing AOF2 also caused DNMT1 deficiency and further enhanced global demethylation during somatic cell reprogramming (SCR) of hHFCs. Re-supplementing AOF2 in iPS cells disrupted such global demethylation and induced cell differentiation. Given that both hES and iPS cells highly express mir-302, our findings suggest a novel link between zygotic reprogramming and SCR, providing a regulatory mechanism responsible for global demethylation in both events. As the mechanism of conventional iPS cell induction methods remains largely unknown, understanding this microRNA (miRNA)-mediated SCR mechanism may shed light on the improvements of iPS cell generation.  相似文献   

16.
17.
Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells.  相似文献   

18.
19.
Pancreatic ductal adenocarcinoma (PDAC) remains a challenging malignancy due to distant metastasis. RELA, a major component of the NF-κB pathway, could serve as an oncogene through activating proliferation or migration-related gene expression, including NEAT1, a well-known oncogenic long noncoding RNA. In the current study, the expression and function of RELA and NEAT1 in PDAC were examined. The potential upstream regulatory microRNAs of RELA were screened and verified for their correlation with RELA and NEAT1. The expression and function of the selected miR-302a-3p were evaluated. RELA and NEAT1 expression were upregulated in PDAC tissues, particularly in PDAC tissues with lymph node metastasis, and their expression correlated with clinical parameters. RELA overexpression promoted PDAC cell proliferation and migration, which could be partially attenuated by the NEAT1 knockdown. By binding to RELA, miR-302a-3p inhibited RELA expression, as well as PDAC cell proliferation and migration. RELA downstream NEAT1 expression was negatively regulated by miR-302a-3p; the suppressive effect of NEAT1 knockdown on PDAC cell proliferation and migration was partially attenuated by miR-302a-3p inhibition. Moreover, through direct binding, the expression of miR-302a-3p was also negatively regulated by NEAT1. The expression of miR-302a-3p was downregulated and negatively correlated with RELA or NEAT1 in tissue samples, indicating that rescuing miR-302a-3p expression may inhibit PDAC cell proliferation and migration through RELA/NEAT1. In summary, RELA, NEAT1, and miR-302a-3p form a feedback loop in PDAC to modulate PDAC cell proliferation and migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号