共查询到20条相似文献,搜索用时 0 毫秒
1.
目的 阐明含有去整合素和金属蛋白酶结构域的跨膜蛋白19(ADAM19)在小鼠睾丸发育中的作用.方法 采用半定量RT-PCR和免疫组化两种实验方法,分别检测ADAM19 mRNA和蛋白质在小鼠睾丸发育中的时空表达.结果 ①最早在胚胎发育的15.5 d才能检测到ADAM19 mRNA的表达,后其表达随着胚胎发育天数的增加而逐渐升高,到围产期表达水平达到最高.出生后,ADAM19 mRNA的表达呈现显著下降的趋势,到成体睾丸中就几乎检测不到ADAM19的表达.②和其mRNA表达变化趋势一样,ADAM19蛋白也是首次在胚胎发育的15.5 d被检测到,一直持续存在到出生后一周,一周后则几乎检测不到;阳性表达信号主要定位在睾丸的曲细精管(睾索)中.结论 ADAM19 在小鼠睾丸中的表达具有显著的发育依赖性. 相似文献
2.
3.
Ruishuang Geng Teppei Noda Joanna F. Mulvaney Vincent Y. W. Lin Albert S. B. Edge Alain Dabdoub 《PloS one》2016,11(2)
Background
In the inner ear Wnt signaling is necessary for proliferation, cell fate determination, growth of the cochlear duct, polarized orientation of stereociliary bundles, differentiation of the periotic mesenchyme, and homeostasis of the stria vascularis. In neonatal tissue Wnt signaling can drive proliferation of cells in the sensory region, suggesting that Wnt signaling could be used to regenerate the sensory epithelium in the damaged adult inner ear. Manipulation of Wnt signaling for regeneration will require an understanding of the dynamics of Wnt pathway gene expression in the ear. We present a comprehensive screen for 84 Wnt signaling related genes across four developmental and postnatal time points.Results
We identified 72 Wnt related genes expressed in the inner ear on embryonic day (E) 12.5, postnatal day (P) 0, P6 and P30. These genes included secreted Wnts, Wnt antagonists, intracellular components of canonical signaling and components of non-canonical signaling/planar cell polarity.Conclusion
A large number of Wnt signaling molecules were dynamically expressed during cochlear development and in the early postnatal period, suggesting complex regulation of Wnt transduction. The data revealed several potential key regulators for further study. 相似文献4.
Ryan Tasseff Anjali Bheda-Malge Teresa DiColandrea Charles C. Bascom Robert J. Isfort Richard Gelinas 《PLoS computational biology》2014,10(11)
The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its regulation would shed light on many other complex systems relevant to biological and medical research. Currently, a systematic characterization of gene expression and summarization within the context of a mathematical model is not yet available. Given the cyclic nature of the hair cycle, we felt it was important to consider a subset of genes with periodic expression. To this end, we combined several mathematical approaches with high-throughput, whole mouse skin, mRNA expression data to characterize aspects of the dynamics and the possible cell populations corresponding to potentially periodic patterns. In particular two gene clusters, demonstrating properties of out-of-phase synchronized expression, were identified. A mean field, phase coupled oscillator model was shown to quantitatively recapitulate the synchronization observed in the data. Furthermore, we found only one configuration of positive-negative coupling to be dynamically stable, which provided insight on general features of the regulation. Subsequent bifurcation analysis was able to identify and describe alternate states based on perturbation of system parameters. A 2-population mixture model and cell type enrichment was used to associate the two gene clusters to features of background mesenchymal populations and rapidly expanding follicular epithelial cells. Distinct timing and localization of expression was also shown by RNA and protein imaging for representative genes. Taken together, the evidence suggests that synchronization between expanding epithelial and background mesenchymal cells may be maintained, in part, by inhibitory regulation, and potential mediators of this regulation were identified. Furthermore, the model suggests that impairing this negative regulation will drive a bifurcation which may represent transition into a pathological state such as hair miniaturization. 相似文献
5.
检控蛋白Rad17在小鼠睾丸精子发生过程中的表达及其磷酸化变化 总被引:1,自引:0,他引:1
Rad17是细胞周期检控点信号转导过程中的一个关键检控蛋白,在DNA损伤检控和DNA复制检控中具有重要功能。但Rad17在细胞减数分裂中的检控作用还不是很清楚。因细胞减数分裂在睾丸组织中非常活跃,应用Western印迹检测Rad17在不同发育时期的小鼠睾丸组织中的表达及其磷酸化水平,并应用免疫组化的方法检测小鼠睾丸组织不同时期生殖细胞内Rad17的表达变化。结果显示Rad17在小鼠睾丸组织内高表达,而在肝、肾等组织中表达水平较低;Rad17在不同周龄的小鼠睾丸组织中均高水平表达,但在4周龄以后的小鼠睾丸组织中其磷酸化水平明显升高;免疫组化结果显示Rad17在精原细胞、精母细胞的细胞核中高表达,但在成熟精子细胞中消失。这些结果提示Rad17在小鼠睾丸生殖细胞减数分裂过程中也起重要检控作用。 相似文献
6.
7.
One of the fundamental mysteries of the human visual system is the continuous function of cone photoreceptors in bright daylight. As visual pigment is destroyed, or bleached, by light [1], cones require its rapid regeneration, which in turn involves rapid recycling of the pigment's chromophore. The canonical visual cycle for rod and cone pigments involves recycling of their chromophore from all-trans retinol to 11-cis retinal in the pigment epithelium, adjacent to photoreceptors [2]. However, shortcomings of this pathway indicate the function of a second, cone-specific, mechanism for chromophore recycling [3]. Indeed, biochemical [3], [4], [5], [6] and [7] and physiological [8] studies on lower species have described a cone-specific visual cycle in addition to the long-known pigment epithelium pathway. Two important questions remain, however: what is the role of this pathway in the function of mammalian cones, and is it present in higher mammals, including humans? Here, we show that mouse, primate, and human neural retinas promote pigment regeneration and dark adaptation selectively in cones, but not in rods. This pathway supports rapid dark adaptation of mammalian cones and extends their dynamic range in background light independently of the pigment epithelium. This pigment-regeneration mechanism is essential for our daytime vision and appears to be evolutionarily conserved. 相似文献
8.
LIM结构域蛋白KyoT在成年小鼠睾丸的表达 总被引:2,自引:0,他引:2
报道了KyoT在成年小鼠体内的表达,以便进一步研究KyoT在体内的功能。为研究KyoT mRNA及蛋白质水平的表达,采用Northern印迹、RT-PCR、免疫组织化学SABC和原位杂交方法。睾丸中两种KyoT的mRNA水平均很高,睾丸间质细胞的免疫化学反应阳性,阳性物质分布于细胞质内,细胞核呈阴性反应。同样,KyoT的mRNA在睾丸间质细胞杂交信号呈阳性反应,阳性物亦分布于细胞质内,细胞核呈阴性反应。生精细胞及对照组均为阴性。上述结果提示睾丸中有KyoT的表达,且特异性分布于睾丸间质细胞。 相似文献
9.
Notch signalling regulates a multitude of differentiation processes during Drosophila development. For example, Notch activity is required for proper wing vein differentiation which is hampered in mutants of either the receptor Notch, the ligand Delta or the antagonist Hairless. Moreover, the Notch pathway is involved in several aspects of Drosophila oogenesis as well. We have identified Drosophila Cyclin G (CycG) as a molecular interaction partner of Hairless, the major antagonist in the Notch signalling pathway, in vitro and in vivo. Loss of CycG was shown before to cause female sterility and to disturb the architecture of the egg shell. Nevertheless, Notch dependent processes during oogenesis appeared largely unaffected in cycG mutant egg chambers. Loss of CycG modified the dominant wing phenotypes of Notch, Delta and Hairless mutants. Whereas the Notch loss of function phenotype was ameliorated by a loss of CycG, the phenotypes of either Notch gain of function or of Delta or Hairless loss of function were enhanced. In contrast, loss of CycG had only a minor effect on the wing vein phenotype of mutants affecting the EGFR signalling pathway emphasizing the specificity of the interaction of CycG and Notch pathway members. 相似文献
10.
11.
12.
《Cell communication & adhesion》2013,20(4):337-352
Classical cadherins are cell-surface glycoproteins that mediate calcium-dependent cell adhesion. The cytoplasmic domain of these glycoproteins is linked to the cytoskeleton through the catenins (α, β and γ). The catenins are intracellular polypeptides that are part of a complex sub-membranous network modulating the adhesive ability of the cells. One approach to elucidate the role of these molecules in the cell is to investigate their distribution during mouse development and in adult tissues. This study reports that catenins are widely expressed but in varying amounts in embryos and adult tissues. The expression of all three catenins is most prominent in the adult heart muscle and in epithelia of all developmental stages. In other embryonic and adult tissues, lower expression of catenins was detected, e.g., in smooth muscle or connective tissue. Catenins are coexpressed with various cadherins in different tissues. Gastrulation is the first time during embryogenesis when a discrepancy occurs between the expression of catenins and E-cadherin. E-cadherin expression is suppressed in mesodermal cells but not the expression of catenins. This discrepancy suggests that another cadherin may interact with catenins. Similarly, E-cadherin is generally expressed in adult liver but not in the regions surrounding the central veins. In contrast, catenins are uniformly expressed in the liver, suggesting that they are associated with other cadherins in E-cadherin negative cells. Finally, the three catenins are not always concurrently expressed. For example, in peripheral nerves, only β-catenin is observable, and in smooth muscle plakoglobin is not detectable. 相似文献
13.
小鼠早期胚胎发育过程中细胞凋亡及凋亡基因表达的检测 总被引:8,自引:0,他引:8
小鼠早期胚胎发育过程中凋亡现象大量存在,细胞凋亡与凋亡基因表达有关。应用彗星电泳法检测小鼠早期胚胎凋亡情况;应用巢式RT-PCR、免疫组化的方法检测了Bcl-2家族成员(Bax、Bcl-2、Bak、Bcl-xl)的表达变化情况。结果显示:随着胚胎细胞数目的增加,凋亡比率逐渐增大;Bax表达量在整个过程中基本不变,Bcl-2表达量逐渐上调,Bak、Bcl-xl的表达量逐渐降低。对小鼠早期胚胎发育过程中的基因表达研究对于揭示早期胚胎发育的机制有重大的意义。 相似文献
14.
15.
Ju Cui Xiuling Li Zhigang Duan Wenqian Xue Zai Wang Song Lu Raozhou Lin Mengfei Liu Guixia Zhu Jian-Dong Huang 《PloS one》2015,10(4)
Recent studies showed that kidney-specific inactivation of Kif3a produces kidney cysts and renal failure, suggesting that kinesin-mediated intracellular transportation is important for the establishement and maintenance of renal epithelial cell polarity and normal nephron functions. Kif5b, one of the most conserved kinesin heavy chain, is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). In order to elucidate the role of Kif5b in kidney development and function, it is essential to establish its expression profile within the organ. Therefore, in this study, we examined the expression pattern of Kif5b in mouse kidney. Kidneys from embryonic (E) 12.5-, 16.5-dpc (days post coitus) mouse fetuses, from postnatal (P) day 0, 10, 20 pups and from adult mice were collected. The distribution of Kif5b was analyzed by immunostaining. The possible involvement of Kif5b in kidney development was investigated in conditional mutant mice by using a Cre-LoxP strategy. This study showed that the distribution of Kif5b displayed spatiotemporal changes during postnatal kidney development. In kidneys of new born mice, Kif5b was strongly expressed in all developing tubules and in the ureteric bud, but not in the glomerulus or in other early-developing structures, such as the cap mesenchyme, the comma-shaped body, and the S-shaped body. In kidneys of postnatal day 20 or of older mice, however, Kif5b was localized selectively in the basolateral domain of epithelial cells of the thick ascending loop of Henle, as well as of the distal convoluted tubule, with little expression being observed in the proximal tubule or in the collecting duct. Conditional knock-down of Kif5b in mouse kidney did not result in detectable morphological defects, but it did lead to a decrease in cell proliferation rate and also to a mislocalization of Na+/K+/-ATPase, indicating that although Kif5b is non-essential for kidney morphogenesis, it is important for nephron maturation. 相似文献
16.
Shin-ichi Morita Sota Takanezawa Michio Hiroshima Toshiyuki Mitsui Yukihiro Ozaki Yasushi Sako 《Biophysical journal》2014,107(10):2221-2229
Cellular differentiation proceeds along complicated pathways, even when it is induced by extracellular signaling molecules. One of the major reasons for this complexity is the highly multidimensional internal dynamics of cells, which sometimes causes apparently stochastic responses in individual cells to extracellular stimuli. Therefore, to understand cell differentiation, it is necessary to monitor the internal dynamics of cells at single-cell resolution. Here, we used a Raman and autofluorescence spectrum analysis of single cells to detect dynamic changes in intracellular molecular components. MCF-7 cells are a human cancer-derived cell line that can be induced to differentiate into mammary-gland-like cells with the addition of heregulin (HRG) to the culture medium. We measured the spectra in the cytoplasm of MCF-7 cells during 12 days of HRG stimulation. The Raman scattering spectrum, which was the major component of the signal, changed with time. A multicomponent analysis of the Raman spectrum revealed that the dynamics of the major components of the intracellular molecules, including proteins and lipids, changed cyclically along the differentiation pathway. The background autofluorescence signals of Raman scattering also provided information about the differentiation process. Using the total information from the Raman and autofluorescence spectra, we were able to visualize the pathway of cell differentiation in the multicomponent phase space. 相似文献
17.
Cell cycle progression is coordinated with metabolism, signaling and other complex cellular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are limited in use due to unphysiological experimental stress, cell type dependence and often low flexibility. Here, we describe high-content microscopy-assisted cell cycle phenotyping(hi MAC), which integrates high-resolution cell cycle profiling of asynchronous cell populations with immunofluorescence microscopy. hi MAC is compatible with cell types from any species and allows for statistically powerful, unbiased, simultaneous analysis of protein interactions, modifications and subcellular localization at all cell cycle stages within a single sample. For illustration, we provide a hi MAC analysis pipeline tailored to study DNA damage response and genomic instability using a 3–4-day protocol,which can be adjusted to any other cell cycle stage-dependent analysis. 相似文献
18.
Merly Saare Sirje Lulla Tambet T?nissoo Riho Meier Keiu Kask Katrin Ruisu Alar Karis Andres Salumets Margus Pooga 《PloS one》2015,10(6)
Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8), a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility. 相似文献
19.
Xiao-Xin Dai Xing Duan Hong-Lin Liu Xiang-Shun Cui Nam-Hyung Kim Shao-Chen Sun 《Molecules and cells》2014,37(2):126-132
As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restricted to germinal vesicles at the germinal vesicle (GV) stage, was associated with centromeres at pro-metaphase I (Pro-MI), and localized to spindle poles at metaphase I (MI). Disrupting Chk2 activity resulted in cell cycle progression defects. First, inhibitor-treated oocytes were arrested at the GV stage and failed to undergo germinal vesicle breakdown (GVBD); this could be rescued after Chk2 inhibition release. Second, Chk2 inhibition after oocyte GVBD caused MI arrest. Third, the first cleavage of early embryo development was disrupted by Chk2 inhibition. Additionally, in inhibitor-treated oocytes, checkpoint protein Bub3 expression was consistently localized at centromeres at the MI stage, which indicated that the spindle assembly checkpoint (SAC) was activated. Moreover, disrupting Chk2 activity in oocytes caused severe chromosome misalignments and spindle disruption. In inhibitor-treated oocytes, centrosome protein γ-tubulin and Polo-like kinase 1 (Plk1) were dissociated from spindle poles. These results indicated that Chk2 regulated cell cycle progression and spindle assembly during mouse oocyte maturation and early embryo development. 相似文献
20.
Notch是一个进化上十分保守的跨膜受体蛋白家族,它可以通过局部细胞间相互作用,调控机体的生长发育过程.近年来研究发现,Notch及其介导的信号转导与免疫系统也存在着密切的关系,从多个方面参与T细胞发育及功能的调控,包括T细胞的活化和增殖,以及细胞因子分泌.这说明Notch信号途径在免疫系统发育和成熟的免疫细胞功能调节中具有重要的作用. 相似文献