首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (IBD: Crohn disease [CD] and ulcerative colitis [UC]) where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption during critical developmental periods may prevent consecutive intestinal inflammation. The incidence of IBD peaks in young adulthood indicating that pediatric environmental exposures may be important in the etiology of this disease group. We studied the effects of transient dietary cellulose supplementation on dextran sulfate sodium (DSS) colitis susceptibility during the pediatric period in mice. Cellulose supplementation stimulated substantial shifts in the colonic mucosal microbiome. Several bacterial taxa decreased in relative abundance (e.g., Coriobacteriaceae [p = 0.001]), and other taxa increased in abundance (e.g., Peptostreptococcaceae [p = 0.008] and Clostridiaceae [p = 0.048]). Some of these shifts persisted for 10 days following the cessation of cellulose supplementation. The changes in the gut microbiome were associated with transient trophic and anticolitic effects 10 days following the cessation of a cellulose-enriched diet, but these changes diminished by 40 days following reversal to a low cellulose diet. These findings emphasize the transient protective effect of dietary cellulose in the mammalian large bowel and highlight the potential role of dietary fibers in amelioration of intestinal inflammation.  相似文献   

2.
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis   总被引:3,自引:0,他引:3  
Inflammasomes are multiprotein complexes that function as sensors of endogenous or exogenous damage-associated molecular patterns. Here, we show that deficiency of NLRP6 in mouse colonic epithelial cells results in reduced IL-18 levels and altered fecal microbiota characterized by expanded representation of the bacterial phyla Bacteroidetes (Prevotellaceae) and TM7. NLRP6 inflammasome-deficient mice were characterized by spontaneous intestinal hyperplasia, inflammatory cell recruitment, and exacerbation of chemical colitis induced by exposure to dextran sodium sulfate (DSS). Cross-fostering and cohousing experiments revealed that the colitogenic activity of this microbiota is transferable to neonatal or adult wild-type mice, leading to exacerbation of DSS colitis via induction of the cytokine, CCL5. Antibiotic treatment and electron microscopy studies further supported the role of Prevotellaceae as a key representative of this microbiota-associated phenotype. Altogether, perturbations in this inflammasome pathway, including NLRP6, ASC, caspase-1, and IL-18, may constitute a predisposing or initiating event in some cases of human IBD.  相似文献   

3.
4.
Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis (UC), results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L-arginine (L-Arg), a complementary medicine purported to be an enhancer of immunity and vitality in the lay media. Using dextran sulfate sodium (DSS) as a murine colonic injury and repair model with similarities to human UC, we assessed the effect of L-Arg, as DSS induced increases in colonic expression of the y(+) cationic amino acid transporter 2 (CAT2) and L-Arg uptake. L-Arg supplementation improved the clinical parameters of survival, body weight loss, and colon weight, and reduced colonic permeability and the number of myeloperoxidase-positive neutrophils in DSS colitis. Luminex-based multi-analyte profiling demonstrated that there was a marked reduction in proinflammatory cytokine and chemokine expression with L-Arg treatment. Genomic analysis by microarray demonstrated that DSS-treated mice supplemented with L-Arg clustered more closely with mice not exposed to DSS than to those receiving DSS alone, and revealed that multiple genes that were upregulated or downregulated with DSS alone exhibited normalization of expression with L-Arg supplementation. Additionally, L-Arg treatment of mice with DSS colitis resulted in increased ex vivo migration of colonic epithelial cells, suggestive of increased capacity for wound repair. Because CAT2 induction was sustained during L-Arg treatment and inducible nitric oxide (NO) synthase (iNOS) requires uptake of L-Arg for generation of NO, we tested the effect of L-Arg in iNOS(-/-) mice and found that its benefits in DSS colitis were eliminated. These preclinical studies indicate that L-Arg supplementation could be a potential therapy for IBD, and that one mechanism of action may be functional enhancement of iNOS activity.  相似文献   

5.
Apelin and its receptor, the APJ receptor, are expressed in the gastrointestinal tract. The aims of this study were to examine the effects of sodium dextran sulfate (DSS)-induced experimental colitis in rats and mice and inflammatory bowel disease (IBD) in humans on intestinal apelin production, and the influence of exogenous apelin on colonic epithelial cell proliferation in mice. In rodents with experimental colitis, colonic apelin mRNA levels were elevated during the inflammatory reaction as well as during the tissue repair phase that ensues after DSS withdrawal. Fluctuations in colonic apelin expression were paralleled by similar changes in apelin immunostaining. Apelin immunostaining was increased in the surface epithelium, in epithelial cells along the length of the tubular gland and in the stem cell region at the gland base. In ulcerative colitis (UC) and Crohn's disease patients, apelin immunostaining revealed a pattern of increased intestinal apelin content similar to that observed in rodents with experimental colitis. Administration of synthetic apelin to mice during the recovery phase of DSS-induced colitis stimulated colonic epithelial cell proliferation significantly. Our observations that colonic apelin production is increased during and after DSS exposure indicate that apelin plays multiple roles during the different stages of colitis. Additionally, the stimulatory action of exogenous apelin on colonic epithelial proliferation suggests that the increased apelin production during intestinal recovery stage may contribute to the repair of the intestinal epithelium in experimental rodent models of colitis and in IBD patients.  相似文献   

6.
Selenium (Se) is an essential micronutrient that exerts its functions via selenoproteins. Little is known about the role of Se in inflammatory bowel disease (IBD). Epidemiological studies have inversely correlated nutritional Se status with IBD severity and colon cancer risk. Moreover, molecular studies have revealed that Se deficiency activates WNT signaling, a pathway essential to intestinal stem cell programs and pivotal to injury recovery processes in IBD that is also activated in inflammatory neoplastic transformation. In order to better understand the role of Se in epithelial injury and tumorigenesis resulting from inflammatory stimuli, we examined colonic phenotypes in Se-deficient or -sufficient mice in response to dextran sodium sulfate (DSS)-induced colitis, and azoxymethane (AOM) followed by cyclical administration of DSS, respectively. In response to DSS alone, Se-deficient mice demonstrated increased morbidity, weight loss, stool scores, and colonic injury with a concomitant increase in DNA damage and increases in inflammation-related cytokines. As there was an increase in DNA damage as well as expression of several EGF and TGF-β pathway genes in response to inflammatory injury, we sought to determine if tumorigenesis was altered in the setting of inflammatory carcinogenesis. Se-deficient mice subjected to AOM/DSS treatment to model colitis-associated cancer (CAC) had increased tumor number, though not size, as well as increased incidence of high grade dysplasia. This increase in tumor initiation was likely due to a general increase in colonic DNA damage, as increased 8-OHdG staining was seen in Se-deficient tumors and adjacent, non-tumor mucosa. Taken together, our results indicate that Se deficiency worsens experimental colitis and promotes tumor development and progression in inflammatory carcinogenesis.  相似文献   

7.
Goji berry (Lycium barbarum) exerts immune modulation and suppresses inflammation in vitro and in vivo. We hypothesized that Goji berry had beneficial effects on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice through suppressing inflammation. Six-week-old male C57BL/6 mice were supplemented with a standard AIN-93G diet with or without 1% (w/w) Goji berry for 4 weeks. Then, colitis was induced by supplementing 3% DSS in drinking water for 7 days, followed by 7 days of remission period to mimic ulcerative colitis symptoms. Goji berry supplementation ameliorated DSS-induced body weight loss, diminished diarrhea and gross bleeding, and resulted in a significantly decreased disease activity index, as well as DSS-associated colon shortening. Moreover, 30% mortality rate caused by DSS-induced colitis was avoided because of Goji berry supplementation. Histologically, Goji berry ameliorated colonic edema, mucosal damage and neutrophil infiltration into colonic intestinal tissue in response to DSS challenge, which was associated with decreased expression of chemokine (C-X-C motif) ligand 1 and monocyte chemoattractant protein-1, as well as inflammatory mediators interleukin-6 and cyclooxygenase-2. In conclusion, Goji supplementation confers protective effects against DSS­induced colitis, which is associated with decreased neutrophil infiltration and suppressed inflammation. Thus, dietary Goji is likely beneficial to inflammatory bowel disease patients as a complementary therapeutic strategy.  相似文献   

8.
9.
10.
Oxidative stress has been shown to play pivotal roles in the onset of inflammatory bowel disease. We evaluated the effects of a dietary anti-oxidant, Antioxidant Biofactor (AOB), a processed grain food, on dextran sulfate sodium (DSS)-induced colitis in mice. Female ICR mice were fed a diet containing 0.1% or 1% AOB for 2 weeks, during which they were given 5% DSS in drinking water for the latter 1 week to induce colitis. A diet containing 1% AOB, but not that with 0.1% AOB, attenuated DSS-induced body weight loss and colon shortening (each, P < 0.05), and dramatically improved colitis histologic scores. In addition, DSS-induced increases in colonic mucosal IL-1beta, but not TNF-alpha, protein levels were significantly abrogated in 1% AOB-fed mice (P < 0.05). Further, 1% dietary AOB abolished the expression of IL-1beta mRNA levels in colonic mucosa (P < 0.01). Our results suggest that AOB is effective for the prevention of DSS-induced colitis in mice.  相似文献   

11.
Cathelicidin, an antimicrobial peptide of the innate immune system, modulates microbial growth, wound healing, and inflammation. However, its association with inflammatory bowel diseases (IBDs) is unknown. Our objective was to determine whether cathelicidin would exert a modulatory effect on the progression of IBD and, if so, investigate the mechanism of action through which this effect occurred. We evaluated the potential for a synthetic cathelicidin, the mouse cathelin-related antimicrobial peptide (mCRAMP), to prevent the initiation and promote the healing of lesions from inflammatory colitis that was experimentally induced in mice with dextran sulfate sodium (DSS). During the experiment, mCRAMP was given: (i) as a parallel treatment starting together with 3% DSS feeding, and (ii) as a posttreatment starting 7 days after 3% DSS feeding. The body weight, fecal microflora populations, clinical symptoms, and histologic findings of colonic tissues were measured. Relative gene expression of mucins (MUC1, MUC2, MUC3, and MUC4) in colonic tissues was determined by real-time polymerase chain reaction. Intrarectal administration of mCRAMP ameliorated DSS-induced colitis with negligible effects on mucosal healing. The peptide also significantly reduced the increased number of fecal microflora in colitis animals. It reversed the decline of colonic mucus thickness during colitis through upregulation of the expression of mucin genes. Treatment with mCRAMP also prevented colitis development by suppressing the induction of apoptosis by DSS. The current study demonstrates for the first time that intrarectal administration of cathelicidin may be a novel therapeutic option for IBDs.  相似文献   

12.
The thrombin-activated transglutaminase factor XIII (FXIII) that covalently crosslinks and stablizes provisional fibrin matrices is also thought to support endothelial and epithelial barrier function and to control inflammatory processes. Here, gene-targeted mice lacking the FXIII catalytic A subunit were employed to directly test the hypothesis that FXIII limits colonic pathologies associated with experimental colitis. Wildtype (WT) and FXIII-/- mice were found to be comparable in their initial development of mucosal damage following exposure to dextran sulfate sodium (DSS) challenge. However, unlike FXIII-sufficient mice, FXIII-deficient cohorts failed to efficiently resolve colonic inflammatory pathologies and mucosal damage following withdrawal of DSS. Consistent with prior evidence of ongoing coagulation factor activation and consumption in individuals with active colitis, plasma FXIII levels were markedly decreased in colitis-challenged WT mice. Treatment of colitis-challenged mice with recombinant human FXIII-A zymogen significantly mitigated weight loss, intestinal bleeding, and diarrhea, regardless of whether cohorts were FXIII-sufficient or were genetically devoid of FXIII. Similarly, both qualitative and quantitative microscopic analyses of colonic tissues revealed that exogenous FXIII improved the resolution of multiple colitis disease parameters in both FXIII-/- and WT mice. The most striking differences were seen in the resolution of mucosal ulceration, the most severe histopathological manifestation of DSS-induced colitis. These findings directly demonstrate that FXIII is a significant determinant of mucosal healing and clinical outcome following inflammatory colitis induced mucosal injury and provide a proof-of-principle that clinical interventions supporting FXIII activity may be a means to limit colitis pathology and improve resolution of mucosal damage.  相似文献   

13.
Epithelial neutrophil-activating peptide-78 (ENA-78), a member of the CXC chemokine subfamily, is induced by inflammatory cytokines in human colonic enterocyte cell lines and increased in the colon of patients with inflammatory bowel disease (IBD). Lipopolysaccharide-induced CXC-chemokine (LIX) was recently identified as the murine homolog of ENA-78. Here we show that, similar to ENA-78, inflammatory cytokine stimulation of a murine colonic epithelial cell line, MODE-K, results in increased LIX expression. Consistent with the expression pattern of ENA-78 in IBD, LIX expression is significantly increased in mice with colitis induced by the ingestion of dextran sodium sulfate (DSS). Treating mice with antisense oligonucleotides to LIX via rectal enema delivery before DSS treatment results in colonic enterocyte uptake and a significant reduction in neutrophil infiltration and severity of colitis. These findings indicate that LIX plays an integral role in the pathogenesis of DSS-induced colitis. Similarly, enterocyte-derived CXC chemokines may play a key role in regulating neutrophil recruitment and intestinal injury in IBD. The intracolonic administration of ENA-78 antisense oligonucleotides may be effective in treating distal ulcerative colitis in humans.  相似文献   

14.
Emerging evidence supports a pathological link between vitamin D deficiency and the risk of inflammatory bowel disease (IBD). To explore the mechanism we used the dextran sulfate sodium (DSS)-induced colitis model to investigate the role of the vitamin D receptor (VDR) in mucosal barrier homeostasis. While VDR(+/+) mice were mostly resistant to 2.5% DSS, VDR(-/-) mice developed severe diarrhea, rectal bleeding, and marked body weight loss, leading to death in 2 wk. Histological examination revealed extensive ulceration and impaired wound healing in the colonic epithelium of DSS-treated VDR(-/-) mice. Severe ulceration in VDR(-/-) mice was preceded by a greater loss of intestinal transepithelial electric resistance (TER) compared with VDR(+/+) mice. Confocal and electron microscopy (EM) revealed severe disruption in epithelial junctions in VDR(-/-) mice after 3-day DSS treatment. Therefore, VDR(-/-) mice were much more susceptible to DSS-induced mucosal injury than VDR(+/+) mice. In cell cultures, 1,25-dihydroxy-vitamin D(3) [1,25(OH)(2)D(3)] markedly enhanced tight junctions formed by Caco-2 monolayers by increasing junction protein expression and TER and preserved the structural integrity of tight junctions in the presence of DSS. VDR knockdown with small interfering (si)RNA reduced the junction proteins and TER in Caco-2 monolayers. 1,25(OH)(2)D(3) can also stimulate epithelial cell migration in vitro. These observations suggest that VDR plays a critical role in mucosal barrier homeostasis by preserving the integrity of junction complexes and the healing capacity of the colonic epithelium. Therefore, vitamin D deficiency may compromise the mucosal barrier, leading to increased susceptibility to mucosal damage and increased risk of IBD.  相似文献   

15.
The concept of the foetal/developmental origins of adult disease has been around for ~20 years and from the original epidemiological studies in human populations much more evidence has accumulated from the many studies in animal models. The majority of these have focused upon the role of early dietary intake before conception, through gestation and/or lactation and subsequent interactions with the postnatal environment, e.g. dietary and physical activity exposures. Whilst a number of theoretical models have been proposed to place the experimental data into a biological context, the underlying phenomena remain the same; developmental deficits (of single (micro) nutrients) during critical or sensitive periods of tissue growth alter the developmental pathway to ultimately constrain later functional capacity when the individual is adult. Ageing, without exception, exacerbates any programmed sequelae. Thus, adult phenotypes that have been relatively easy to characterise (e.g. blood pressure, insulin sensitivity, body fat mass) have received most attention in the literature. To date, relatively few studies have considered the effect of differential early environmental exposures on reproductive function and fecundity in predominantly mono-ovular species such as the sheep, cow and human. The available evidence suggests that prenatal insults, undernutrition for example, have little effect on lifetime reproductive capacity despite subtle effects on the hypothalamic-pituitary-gonadal axis and gonadal progenitor cell complement. The postnatal environment is clearly important, however, since neonatal/adolescent growth acceleration (itself not independent from prenatal experience) has been shown to significantly influence fecundity in farm animals. The present paper will expand these interesting areas of investigation and review the available evidence regarding developmental programming of reproduction and fertility. However, it appears there is little strong evidence to indicate that offspring fertility and reproductive senescence in the human and in farm animal species are overtly affected by prenatal nutrient exposure. Nevertheless, it is clear that the developing gonad is sensitive to its immediate environment but more detailed investigation is required to specifically test the long-term consequences of nutritional perturbations during pregnancy on adult reproductive well-being.  相似文献   

16.
In this study we examined changes in colonic mucosal permeability induced by dextran sulfate sodium (DSS) during the acute phase of mouse colitis. To induce colitis, the mice were given drinking water containing 5% (w/v) DSS (MW = 40,000) ad libitum. Colonic mucosal permeability was evaluated by the permeation of Evans blue (EB) from the lumen into the wall of the colon on 1, 2, 3 and 7 days postadministration of DSS. Mucosal changes were also histologically examined daily for 7 days postadministration. The permeation of EB increased significantly by days 3 and 7 postadministration. Histological analysis showed that crypt loss was the initial change, with no inflammatory process and the surface mucosal epithelial cells remained morphologically intact. These histological changes developed on 2 to 3 days postadministration. Erosion was first recognized at 5 days postadministration. These findings indicated that the increase in colonic mucosal permeability may have occurred in 3 days postadministration, and the increase in mucosal permeability occurred before the appearance of the inflammatory process. This suggests that an increase in colonic mucosal permeability, leading to the destruction of mucosal barrier function, may play an important role in the induction of DSS-induced murine colitis.  相似文献   

17.
The decrease of neurotransmitter dopamine (DA) levels in the intestine is closely related to the development of inflammatory bowel disease (IBD). However, the functional relevance and underlying mechanistic basis of the effects of DA signaling on IBD remains unclear. Here, we observed that the DRD5 receptor is highly expressed in colonic macrophages, and the deficiency of DA-DRD5 signaling exacerbated experimental colitis. Moreover, DA-DRD5 signaling can inhibit M1 by negatively regulating NF-κB signaling but promote M2 macrophage polarization through activation of the CREB pathway, respectively. The deficiency of DRD5 signaling increased colonic M1 macrophages but reduced M2 cells during colitis. Additionally, the administration of a D1-like agonist that has a higher affinity to DRD5 can attenuate the colitogenic phenotype of mice. Collectively, these findings provide the first demonstration of DA-DRD5 signaling in colonic macrophages controlling the development of colitis by regulating M1/M2 macrophage polarization.Subject terms: Inflammation, Monocytes and macrophages  相似文献   

18.
19.
Milk fat globule-EGF factor 8 (MFG-E8) has been shown to play an important role in maintaining the integrity of the intestinal mucosa and to accelerate healing of the mucosa in septic mice. Herein, we (a) analyzed the expression of MFG-E8 in the gut of wild-type (WT) C57BL/6 (MFG-E8(+/+)) mice with and without dextran sulfate sodium (DSS)-induced colitis, (b) characterized the pathological changes in intestinal mucosa of MFG-E8(+/+) and MFG-E8(-/-) mice with DSS-induced colitis and (c) examined the therapeutic role of MFG-E8 in inflammatory bowel disease by using DSS-induced colitis model. Our data documented that there was an increase in colonic and rectal MFG-E8 expression in MFG-E8(+/+) mice during the development of DSS colitis. MFG-E8 levels in both tissues decreased to below baseline during the recovery phase in mice with colitis. Changes in MFG-E8 gene expression correlated to the levels of inflammatory response and crypt-epithelial injury in both colonic and rectal mucosa in MFG-E8(+/+) mice. MFG-E8(-/-)mice developed more severe crypt-epithelial injury than MFG-E8(+/+) mice during exposure to DSS with delayed healing of intestinal epithelium during the recovery phase of DSS colitis. Administration of MFG-E8 during the recovery phase ameliorated colitis and promoted mucosal repair in both MFG-E8(-/-) and MFG-E8(+/+) mice, indicating that lack of MFG-E8 causes increased susceptibility to colitis and delayed mucosal healing. These data suggest that MGF-E8 is an essential protective factor for gut epithelial homeostasis, and exogenous administration of MFG-E8 may represent a novel therapeutic target in inflammatory bowel disease.  相似文献   

20.
Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号