首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Both environmental and genetic factors contribute to individual susceptibility to initiation of substance use and vulnerability to addiction. Determining genetic risk factors can make an important contribution to understanding the processes leading to addiction. In order to identify gene(s) and mechanisms associated with substance addiction, a custom platform array search for a genetic association in a case/control of homogenous Jordanian Arab population was undertaken. Patients meeting the DSM-VI criteria for substance dependence (n = 220) and entering eight week treatment program at two Jordanian Drug Rehabilitation Centres were genotyped. In addition, 240 healthy controls were also genotyped. The sequenom MassARRAY system (iPLEX GOLD) was used to genotype 49 single nucleotide polymorphisms (SNPs) within 8 genes (DRD1, DRD2, DRD3, DRD4, DRD5, BDNF, SLC6A3 and COMT). RESULTS: This study revealed six new associations involving SNPs within DRD2 gene on chromosome 11. These six SNPs within the DRD2 were found to be most strongly associated with substance addiction in the Jordanian Arabic sample. The strongest statistical evidence for these new association signals were from rs1799732 in the C/-C promoter and rs1125394 in A/G intron 1 regions of DRD2, with the overall estimate of effects returning an odds ratio of 3.37 (chi2 (2, N = 460) = 21, p-value = 0.000026) and 1.78 (chi2 (2, N = 460) = 8, p-value = 0.001), respectively. It has been suggested that DRD2, dopamine receptor D2, plays an important role in dopamine secretion and the signal pathways of dopaminergic reward and drug addiction. CONCLUSION: This study is the first to show a genetic link to substance addiction in a Jordanian population of Arab descent. These findings may contribute to our understanding of drug addiction mechanisms in Middle Eastern populations and how to manage or dictate therapy for individuals. Comparative analysis with different ethnic groups could assist further improving our understanding of these mechanisms.  相似文献   

2.
Heroin addiction is a chronic complex disease with a substantial genetic contribution. This study was designed to identify gene variants associated with heroin addiction in African Americans. The emphasis was on genes involved in reward modulation, behavioral control, cognitive function, signal transduction and stress response. We have performed a case–control association analysis by screening with 1350 variants of 130 genes. The sample consisted of 202 former severe heroin addicts in methadone treatment and 167 healthy controls with no history of drug abuse. Single nucleotide polymorphism (SNP), haplotype and multi-SNP genotype pattern analyses were performed. Seventeen SNPs showed point-wise significant association with heroin addiction (nominal P < 0.01). These SNPs are from genes encoding several receptors: adrenergic ( ADRA1A ), arginine vasopressin ( AVPR1A ), cholinergic ( CHRM2 ), dopamine (DRD1 ), GABA-A ( GABRB3 ), glutamate ( GRIN2A ) and serotonin ( HTR3A ) as well as alcohol dehydrogenase ( ADH7 ), glutamic acid decarboxylase ( GAD1 and GAD2 ), the nucleoside transporter ( SLC29A1 ) and diazepam-binding inhibitor ( DBI ). The most significant result of the analyses was obtained for the GRIN2A haplotype G-A-T (rs4587976-rs1071502-rs1366076) with protective effect ( P uncorrected = 9.6E- 05, P corrected = 0.058). This study corroborates several reported associations with alcohol and drug addiction as well as other related disorders and extends the list of variants that may affect the development of heroin addiction. Further studies will be necessary to replicate these associations and to elucidate the roles of these variants in drug addiction vulnerability.  相似文献   

3.
Polymorphisms of DRD2 and A NKK1 have been associated with psychiatric syndromes where there is believed to be an underlying learning process deficit such as addiction, post-traumatic stress disorder and psychopathy. We investigated the effects of the DRD2 C957T and ANKK1 Taq IA single nucleotide polymorphism (SNP), which have been associated with psychopathic traits in alcoholic patients, on fear conditioning and aversive priming in healthy volunteers. We found that the DRD2 C957T SNP, but not the ANKK1 Taq IA SNP, was associated with both differential conditioning of the skin conductance response and the aversive priming effect. There were no differences between the genotype groups with respect to the extinction of the skin-conductance conditioned response. These results suggest that the C957T SNP could be related to learning differences associated with the risk of developing psychiatric disorders in individuals that are carriers of the C homozygous genotype. Our genetic data raise the possibility that the dopaminergic system functional variations determined by this SNP could affect fear learning.  相似文献   

4.
Obesity is a multifactorial disease caused by the interaction between genotype and environment, and it is considered to be a type of addictive alteration. The A1 allele of the DRD2/ANKK1-TaqIA gene has been associated with addictive disorders, with obesity and with the performance in executive functions. The 7 repeat allele of the DRD4 gene has likewise been associated with the performance in executive functions, as well as with addictive behaviors and impulsivity. Participants were included in the obesity group (N = 42) if their body mass index (BMI) was equal to or above 30, and in the lean group (N = 42) if their BMI was below 25. The DRD2/ANKK1-TaqIA and DRD4 VNTR polymorphisms were obtained. All subjects underwent neuropsychological assessment. Eating behavior traits were evaluated. The ‘DRD2/ANKK1-TaqIA A1-allele status’ had a significant effect on almost all the executive variables, but no significant ‘DRD4 7R-allele status’ effects were observed for any of the executive variables analyzed. There was a significant ‘group’ x ‘DRD2/ANKK1-TaqIA A1-allele status’ interaction effect on LN and ‘group’ x ‘DRD4 7R-allele status’ interaction effect on TMT B-A score. Being obese and a carrier of the A1 allele of DRD2/ANKK1-TaqIA or the 7R allele of DRD4 VNTR polymorphisms could confer a weakness as regards the performance of executive functions.  相似文献   

5.
Individuals vary in their willingness to take financial risks. Here we show that variants of two genes that regulate dopamine and serotonin neurotransmission and have been previously linked to emotional behavior, anxiety and addiction (5-HTTLPR and DRD4) are significant determinants of risk taking in investment decisions. We find that the 5-HTTLPR s/s allele carriers take 28% less risk than those carrying the s/l or l/l alleles of the gene. DRD4 7-repeat allele carriers take 25% more risk than individuals without the 7-repeat allele. These findings contribute to the emerging literature on the genetic determinants of economic behavior.  相似文献   

6.
Working memory (WM) is a highly heritable cognitive trait that is involved in many higher-level cognitive functions. In the past few years, much evidence has indicated that the reduction of dopamine activity in human brain can impair the WM system of the neuropsychiatric disorders. In this study, we hypothesized that some genes in the dopamine system were involved in the individual difference of the cognitive ability in healthy population. To confirm this hypothesis, a population-based study was performed to examine the effects of COMT, DAT (1), DRD (1), DRD (2), DRD (3), and DRD (4) on WM spans. Our results indicated there were significant associations of TaqIA and TaqIB in DRD (2) with digital WM span, respectively (χ(2) = 9.460, p = 0.009; χ(2) = 6.845, p = 0.033). On the other hand, we found a significant interaction between Ser9Gly in DRD (3) and TaqIA of DRD (2) on digital WM span (F = 3.207, p = 0.013). COMT, DAT (1) , DRD (1), and DRD (4), however, had no significant effects on digital and spatial WM spans (χ(2)<3.84, p > 0.05). These preliminary results further indicated that certain functional variants in dopamine system, such as TaqIA and TaqIB of DRD (2), were possibly involved in difference of WM in a healthy population.  相似文献   

7.
Wang C  Li S  Li C  Feng Y  Peng X  Gong Y 《Molecular biology reports》2012,39(9):9239-9246
The dopamine D1 receptor (DRD1), a member of the dopamine receptor (DR) gene family, participates in the regulation of reproductive behaviors in birds. In this study, a 1,390 bp fragment covering the complete coding region (CDS) of duck DRD1 gene was obtained. The cDNA (GenBank: JQ346726) contains a 1,353 bp CDS and a 37 bp 3'- UTR including a TGA termination codon (nucleotides 1,354-1,356 bp). The duck DRD1 shares about 76-96 % nucleic acid identity and 82-98 % amino acid identity with their counterparts in other species. A phylogenetic tree based on amino acid sequences displays that duck DRD1 protein is closely related with those of chicken and zebra finch. The quantitative real-time PCR analysis indicates that the DRD1 mRNA is widely expressed in all examined tissues. Five single nucleotide polymorphisms (SNPs) (c.189A > T, c.507C > T, c.681C > T, c.765A > T, c.1044A > G) in the CDS of duck DRD1 gene were indentified, c.681C > T and c.765A > T were genotyped and analyzed in a two generations duck population by using of PCR-RFLP. Association analysis demonstrated that the c.681C > T genotypes were significantly associated with body weight at sexual maturity (when laying their first egg) (P < 0.01), egg production within 360 days (P < 0.05) and 420 days (P < 0.01); the c.765A > T genotypes were significantly associated with egg shape index and egg shell strength (P < 0.05). Those results suggest that the DRD1 gene may be a potential genetic marker to improve some reproductive traits in ducks.  相似文献   

8.
The dopamine pathway and especially the dopamine receptors 1 and 2 (DRD1 and DRD2) are implicated in the regulation of mothering in rats. Evidence for this in humans is lacking. Here, we show that genetic variation in both DRD1 and DRD2 genes in a sample of 187 Caucasian mothers predicts variation in distinct maternal behaviors during a 30-min mother-infant interaction at 6 months postpartum. Two DRD1 single-nucleotide polymorphisms (SNPs rs265981 and rs686) significantly associated with maternal orienting away from the infant (P = 0.002 and P = 0.003, respectively), as did DRD1 haplotypes (P = 0.03). Two DRD2 SNPs (rs1799732 and rs6277) significantly associated with maternal infant-directed vocalizing (P = 0.001 and P = 0.04, respectively), as did DRD2 haplotypes (P = 0.01). We present evidence for heterosis in DRD1 where heterozygote mothers orient away from their infants significantly less than either homozygote group. Our findings provide important evidence that genetic variation in receptors critical for mothering in non-human species also affect human maternal behaviors. The findings also highlight the importance of exploring multiple dimensions of the complex human mothering phenotype.  相似文献   

9.
Dopa-responsive dystonia (DRD) is a rare inherited dystonia that responds very well to levodopa treatment. Genetic mutations of GTP cyclohydrolase I (GCH1) or tyrosine hydroxylase (TH) are disease-causing mutations in DRD. To evaluate the genotype-phenotype correlations and diagnostic values of GCH1 and TH mutation screening in DRD patients, we carried out a combined study of familial and sporadic cases in Chinese Han subjects. We collected 23 subjects, 8 patients with DRD, 5 unaffected family members, and 10 sporadic cases. We used PCR to sequence all exons and splicing sites of the GCH1 and TH genes. Three novel heterozygous GCH1 mutations (Tyr75Cys, Ala98Val, and Ile135Thr) were identified in three DRD pedigrees. We failed to identify any GCH1 or TH mutation in two affected sisters. Three symptom-free male GCH1 mutation carriers were found in two DRD pedigrees. For those DRD siblings that shared the same GCH1 mutation, symptoms and age of onset varied. In 10 sporadic cases, only two heterozygous TH mutations (Ser19Cys and Gly397Arg) were found in two subjects with unknown pathogenicity. No GCH1 and TH mutation was found in 40 unrelated normal Han Chinese controls. GCH1 mutation is the main etiology of familial DRD. Three novel GCH1 mutations were identified in this study. Genetic heterogeneity and incomplete penetrance were quite common in DRD patients, especially in sporadic cases. Genetic screening may help establish the diagnosis of DRD; however, a negative GCH1 and TH mutation test would not exclude the diagnosis.  相似文献   

10.
We identified subsets of neurons in the brain that coexpress the dopamine receptor subtype-2 (DRD2) and the ghrelin receptor (GHSR1a). Combination of FRET confocal microscopy and Tr-FRET established the presence of GHSR1a:DRD2 heteromers in hypothalamic neurons. To interrogate function, mice were treated with the selective DRD2 agonist cabergoline, which produced anorexia in wild-type and ghrelin?/? mice; intriguingly, ghsr?/? mice were refractory illustrating dependence on GHSR1a, but not ghrelin. Elucidation of mechanism showed that formation of GHSR1a:DRD2 heteromers allosterically modifies canonical DRD2 dopamine signaling resulting in Gβγ subunit-dependent mobilization of [Ca2?](i) independent of GHSR1a basal activity. By targeting the interaction between GHSR1a and DRD2 in wild-type mice with a highly selective GHSR1a antagonist (JMV2959) cabergoline-induced anorexia was blocked. Inhibiting dopamine signaling in subsets of neurons with a GHSR1a antagonist has profound therapeutic implications by providing enhanced selectivity because neurons expressing DRD2 alone would be unaffected.  相似文献   

11.
12.
Multiple dopamine receptors in the dopaminergic system may be prime candidates for genetic influence on alcohol abuse and dependence due to their involvement in reward and reinforcing mechanisms. Genetic polymorphisms in dopamine receptor genes are believed to influence the development and/or severity of alcoholism. To examine the genetic effects of the Dopamine Receptor D1 (DRD) gene family (DRD1-DRD5) in the Korean population, 11 polymorphisms in the DRD gene family were genotyped and analyzed in 535 alcohol-dependent subjects and 273 population controls. Although none of the polymorphisms of DRD1-5 genes were found to be associated with the risk of alcoholism, one 5' UTR polymorphism in the DRD1 (DRD1-48A>G) gene was significantly associated with severity of alcohol-related problem, as measured by the Alcohol Use Disorders Identification Test (AUDIT) in a gene dose-dependent manner, i.e., 24.37 (+/-8.19) among patients with -48A/A genotype, 22.37 (+/-9.49) among those with -48A/G genotype, and 17.38 (+/-8.28) among those with -48G/G genotype (P=0.002). The genetic effects of DRD1-48A>G were further analyzed with other phenotypes among alcohol-dependent subjects. Interestingly, the DRD1-48A>A genotype was also found to be associated with novelty seeking (NC), harm avoidance (HA), and persistence (P) (P =0.01, 0.02, and 0.003, respectively). The information derived from this study could be valuable for understanding the genetic factors involved in alcoholic phenotypes and genetic distribution of the DRD gene family, and could facilitate further investigation in other ethnic groups.  相似文献   

13.
A cDNA encoding the bovine dopamine receptor 1 (DRD1) was isolated from a bovine cDNA library, cloned and completely sequenced. The coding region showed 93 and 91% sequence identity on DNA level and 96 and 94% on protein level with its respective porcine and human orthologs. The bovine DRD1 and dopamine receptor 5 (DRD5) were mapped, respectively, to BTA10 and 6 by radiation hybrid mapping. One SNP was found in DRD1 and four in DRD5. Using polymerase chain reaction-restriction fragment length polymorphism, 11 different European cattle breeds were screened for the presence of the DRD1 and DRD5 substitutions. Allele frequencies for DRD1 and DRD5 alleles were very similar across all the breeds examined. Allele frequency discrepancies were found between Belgian Blue beef breed and the other breeds.  相似文献   

14.
Zhao Z  Li S  Zhang L  Deng X  Chen T  Zeng K  Mo X 《DNA and cell biology》2012,31(6):1010-1014
Dopamine D1 receptor (DRD1) gene is associated with the pathogenesis of myocardial infarction (MI) in aspects of plaque rupture, platelet aggregation, and neutrophil-mediated injury of cardiac myocytes. Thus, the study was designed to explore whether the A-48G polymorphism of the DRD1 gene was associated with MI. The genotype of the DRD1A-48G polymorphism was determined by polymerase chain reaction in the 602 Han Chinese participants, 255 MI patients and 347 controls without MI. A significant association was found between the A-48G polymorphism of DRD1 and MI (genotype model: χ(2)=13.2, unadjusted p=0.001; χ(2)=13.9, adjusted p=0.0002; dominant model: adjusted OR 2.05, 95%CI 1.40-3.00, p=0.0002; recessive model: adjusted OR 2.34, 95%CI 1.01-5.39, p=0.047). The G allele was a risk-increased allele for MI (unadjusted OR 1.83, 95%CI 1.34-2.50, p=0.0001; adjusted OR 1.94, 95%CI 1.40-2.68, p=0.00007). Thus, the study demonstrated the significant association between A-48G polymorphism of the DRD1 gene and MI.  相似文献   

15.
Molecular cloning studies have now identified five structurally homologous genes encoding the biosynthesis of the human dopamine receptors, DRD1, DRD2, DRD3, DRD4, and DRD5. Two of these dopamine receptors (DRD1 and DRD5) are encoded by intronless genes. To ascertain whether there are other intronless genes that share identity with the gene (DRD5) encoding the DRD5 receptor, we used a cloning method based on the polymerase chain reaction (PCR). Human genomic DNA was amplified by PCR with oligodeoxyribonucleotides (oligos) based on the DRD5 nucleotide (nt) sequence. Amplification of nt sequences between these oligos allowed the isolation of two independent intronless genes that share identity with DRD5. The full-length clones have also been isolated by screening human genomic libraries. The deduced amino acid sequences for these genes, PG-1 and PG-2, share 91% and 92% identity to DRD5, respectively. However, each of the genes contains differences in the coding regions that would render these genes incapable of encoding functional receptors. Thus, the human genome contains at least two DRD5 pseudogenes, consistent with in situ human chromosomal hybridization analysis which reveals the presence of two pseudogenes.  相似文献   

16.
17.
18.
RNA-directed DNA methylation, which is one of several RNAi-mediated pathways in the nucleus, has been highly elaborated in the plant kingdom. RNA-directed DNA methylation requires for the most part conventional DNA methyltransferases, histone modifying enzymes and RNAi proteins; however, several novel, plant-specific proteins that are essential for this process have been identified recently. DRD1 (defective in RNA-directed DNA methylation) is a putative SWI2/SNF2-like chromatin remodelling protein; DRD2 and DRD3 (renamed NRPD2a and NRPD1b, respectively) are subunits of Pol IVb, a putative RNA polymerase found only in plants. Interestingly, DRD1 and Pol IVb appear to be required not only for RNA-directed de novo methylation, but also for full erasure of methylation when the RNA trigger is withdrawn. These proteins thus have the potential to facilitate dynamic regulation of DNA methylation. Prominent targets of RNA-directed DNA methylation in the Arabidopsis thaliana genome include retrotransposon long terminal repeats (LTRs), which have bidirectional promoter/enhancer activities, and other types of intergenic transposons and repeats. Intergenic solitary LTRs that are targeted for reversible methylation by the DRD1/Pol IVb pathway can potentially act as switches or rheostats for neighboring plant genes. The resulting alterations in gene expression patterns may promote physiological flexibility and adaptation to the environment.  相似文献   

19.
Dopamine receptor D(2) (DRD2) has two splicing isoforms, a long form (D2L) and short form (D2S), which have distinct functions in the dopaminergic system. However, the regulatory mechanism of the alternative splicing of DRD2 is unknown. In this study, we examined which splicing factors regulate the expression of D2L and D2S by over-expressing several RNA-binding proteins in HEK293 cells. In a cellular splicing assay, the over-expression of polypyrimidine tract-binding protein 1 (PTBP1) reduced the expression of D2S, whereas the knockdown of PTBP1 increased the expression of D2S. We also identified the regions of DRD2 that are responsive to PTBP1 using heterologous minigenes and deletion mutants. Our results indicate that PTBP1 regulates the alternative splicing of DRD2. Considering that DRD2 inhibits cAMP-dependent protein kinase A, which modulates the intracellular localization of PTBP1, PTBP1 may contribute to the autoregulation of DRD2 by regulating the expression of its isoforms.  相似文献   

20.
The error-related negativity (ERN) is a negative deflection in the event-related potential that occurs approximately 50 ms following the commission of an error at fronto-central electrode sites. Previous models suggest dopamine plays a role in the generation of the ERN. We recorded event-related potentials (ERPs) while 279 children aged 5-7 years completed a simple Go/No-Go task; the ERN was examined in relation to the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes. Results suggest an additive effect of the DRD2 and DAT1 genotype on ERN magnitude such that children with at least one DRD2 A1 allele and children with at least one DAT1 9 allele have an increased (i.e. more negative) ERN. These results provide further support for the involvement of dopamine in the generation of the ERN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号