首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bürkle A 《Free radical research》2006,40(12):1295-1302
Half a century ago, when the free radical theory of aging was first proposed, the damaging effects of reactive oxygen species (ROS) were in the focus of attention and considered the single most important determinant of aging. Two decades later, however, the disposable soma theory of aging redirected the attention to the potential impact of cellular maintenance and repair pathways that are both genetically and environmentally determined and are counteracting the damaging effects of ROS. In the present paper, recent experimental data linking DNA repair pathways with the aging process are summarised. Special attention is paid to poly(ADP-ribosyl)ation, a DNA-damage driven posttranslational modification of proteins.  相似文献   

2.
The genome stability of higher eukaryotes depends largely on the functioning of the DNA repair systems. In turn, the precise regulation of each step of repair processes is necessary for the efficient DNA repair. Although most pathways of DNA repair have already been established, their regulation mechanisms require further investigation. Poly(ADP-ribose) polymerases (PARPs) are widely considered to be potential regulators of DNA repair. The role of the most prominent member of this protein family, i.e., PARP1, in DNA repair has been being intensively studied, while the literature data on participation in the repair processes of PARP2, the closest PARP1 homolog, are poorly summarized, although a great body of information concerning its participation in DNA repair has been accumulated. Using the PARP2-deficient model organisms and cell lines, their increased sensitivity to several DNA damaging agents was elucidated. The accumulation of PARP2 at the DNA damage sites in cells was shown. There are data that demonstrate the proteinprotein interaction of PARP2 with several proteins of the base excision repair/single-strand break repair and nonhomologous end joining. Most of the data on the PARP2 role were obtained in experiments with model organisms and cell lines; thus, it is difficult to elucidate the influence of PARP2 on specific processes in vivo. In this review, we tried to summarize data on the participation of PARP2 in the DNA repair processes, including our recent results.  相似文献   

3.
We examined the possible role of calmodulin in the excision repair of ultraviolet light-induced pyrimidine dimers in damaged DNA by means of specialized assay systems. These assays included bromodeoxyuridine photolysis, dimer chromatography and cytosine arabinoside incorporation in conjunction with hydroxyurea. The calmodulin antagonist, trifluoperazine, and the calcium-chelating agent, EGTA, were employed to ascertain what affect calmodulin played in the repair process. Normal human fibroblast cells were used in all studies described in this report. After exposure to 10 J/m2 of 254 nm light, we observed a decrease of about 30% in the number of single-strand breaks produced in the presence of 25 microM trifluoperazine (1.9 vs. 3.3) in controls although the numbers of bases re-inserted in the repaired regions were similar (64 vs. 72). Measurement of thymine-containing dimers remaining throughout a 24 h time period indicated a 30% difference in the excision of dimers when tested with either EGTA or trifluoperazine. We also observed a significant decrease in the number of cytosine arabinoside arrested repair sites in the presence of either EGTA or trifluoperazine. The results are discussed with relation to the possibility of calmodulin altering the initial incision by repair endonuclease.  相似文献   

4.
After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood.  相似文献   

5.
DNA damage by peroxynitrite characterized with DNA repair enzymes.   总被引:9,自引:0,他引:9       下载免费PDF全文
The DNA damage induced by peroxynitrite in isolated bacteriophage PM2 DNA was characterized by means of several repair enzymes with defined substrate specificities. Similar results were obtained with peroxynitrite itself and with 3-morpholinosydnonimine (SIN-1), a compound generating the precursors of peroxynitrite, nitric oxide and superoxide. A high number of base modifications sensitive to Fpg protein which, according to HPLC analysis, were mostly 8-hydroxyguanine residues, and half as many single-strand breaks were observed, while the numbers of oxidized pyrimidines (sensitive to endonuclease III) and of sites of base loss (sensitive to exonuclease III or T4 endonuclease V) were relatively low. This DNA damage profile caused by peroxynitrite is significantly different from that obtained with hydroxyl radicals or with singlet molecular oxygen. The effects of various radical scavengers and other additives (t-butanol, selenomethionine, selenocystine, desferrioxamine) were the same for single-strand breaks and Fpg-sensitive modifications and indicate that a single reactive intermediate but not peroxynitrite itself is responsible for the damage.  相似文献   

6.
We have investigated the effects of hyperthermia treatment on sequential steps of the repair of UV-induced DNA damage in HeLa cells. DNA repair synthesis was inhibited by 40% after 15 min of hyperthermia treatment at 45 degrees C; greater inhibition of repair synthesis occurred with prolonged incubation at 45 degrees C. Enzymatic digestion of repair-labeled DNA with Exonuclease III indicated that once DNA repair was initiated, the DNA repair patch was synthesized to completion and that ligation of the DNA repair patch occurred. Thus the observed inhibition of UV-induced DNA repair synthesis by hyperthermia treatment may be the result of inhibition of enzymes involved in the initiating step(s) of DNA repair. DNA repair patches synthesized in UV-irradiated cells labeled at 37 degrees C with [3H]Thd were 2.2-fold more sensitive to micrococcal nuclease digestion than was parental DNA; if the length of the labeling period was prolonged, the nuclease sensitivity of the repair patch synthesized approached that of the parental DNA. DNA repair patches synthesized at 45 degrees C, however, remained sensitive to micrococcal nuclease digestion even after long labeling periods, indicating that heat treatment inhibits the reassembly of the DNA repair patch into nucleosomal structures.  相似文献   

7.
8.
The ability of rat germinal cells to recover from genotoxic stress has been investigated using isolated populations of primary spermatocytes and round spermatids. Using a comet assay at pH 10.0 to assess single strand breakage (SSB) in DNA, it was found that a high level of damage was induced by 5 Gy gamma-irradiation and acute exposure to 50 microM H2O2. This damage was effectively repaired during a subsequent recovery period of 1-3 hours culture in vitro but repair was significantly delayed in the presence of the poly(ADP-ribose)polymerase (PARP) inhibitor 3-aminobenzamide (3-ABA). Immunofluorescence detection of PARP with specific antibodies localised the protein to discrete foci within the nucleus of both spermatocytes and spermatids. Poly(ADP-ribose) (pADPR) could also be detected in spermatid nuclei following gamma-irradiation or H2O2 treatment. Moreover, PARP activation occurs both in spermatocytes and spermatids left to recover after both genotoxic stresses. The NO donors, 3-morpholino-sydnonimine (SIN-1) and S-nitrosoglutathione (SNOG), caused significant SSBs in both spermatocytes and spermatids. The effects of SIN-1 could be prevented by exogenous catalase (CAT), but not superoxide dismutase (SOD), in the cell suspensions. SNOG-induced SSBs were insensitive to both CAT and SOD. It is concluded that DNA in spermatocytes and spermatids is sensitive to damage by gamma-irradiation and H2O2 and that efficient repair of SSBs requires PARP activity.  相似文献   

9.
The effect of exposure to elevated temperatures (41-45 degrees C) on the repair of radiation-induced DNA strand breaks was measured in monolayer cultured Chinese hamster ovary (CHO) cells. Prior exposure of cells to temperatures between 43 and 45 degrees C resulted in significant decreases in the rate of repair of DNA damage. Exposure to 45 degrees C for 15 min slowed the rate of DNA repair to 0.17 of the control repair rate. The To for inactivation of DNA repair was observed to be 34, 13 and 6 min at 43, 44 and 45 degrees C, respectively. Stepdown-heating (45 degrees C for 15 min followed by repair at 41 degrees C) resulted in greater inhibition of DNA repair (0.11 of the control rate) than was observed after acute heating alone. Repair at 41 degrees C was observed to proceed in unheated cells at a faster rate than at 37 degrees C. An Arrhenius analysis of the inactivation kinetics of DNA repair between 43 and 45 degrees C indicated an activation energy of 140 kcal mol-1 of protein for the inhibition of DNA repair. In general, the results were inconsistent with either a retardation of the DNA repair rate or an increase in unrepaired DNA lesions being responsible for heat-induced radiosensitization.  相似文献   

10.
Oxidative damage to DNA caused by free radicals and other oxidants generate base and sugar damage, strand breaks, clustered sites, tandem lesions and DNA-protein cross-links. Oxidative DNA damage is mainly repaired by base-excision repair in living cells with the involvement of DNA glycosylases in the first step and other enzymes in subsequent steps. DNA glycosylases remove modified bases from DNA, generating an apurinic/apyrimidinic (AP) site. Some of these enzymes that remove oxidatively modified DNA bases also possess AP-lyase activity to cleave DNA at AP sites. DNA glycosylases possess varying substrate specificities, and some of them exhibit cross-activity for removal of both pyrimidine- and purine-derived lesions. Most studies on substrate specificities and excision kinetics of DNA glycosylases were performed using oligonucleotides with a single modified base incorporated at a specific position. Other studies used high-molecular weight DNA containing multiple pyrimidine- and purine-derived lesions. In this case, substrate specificities and excision kinetics were found to be different from those observed with oligonucleotides. This paper reviews substrate specificities and excision kinetics of DNA glycosylases for removal of pyrimidine- and purine-derived lesions in high-molecular weight DNA.  相似文献   

11.
Dual-inhibitors of PARP1 and PARP2 are promising anti-cancer drugs. In addition to blocking PARP1&2 enzymatic activity, PARP inhibitors also extend the lifetime of DNA damage-induced PARP1&2 foci, termed trapping. Trapping is important for the therapeutic effects of PARP inhibitors. Using live-cell imaging, we found that PARP inhibitors cause persistent PARP2 foci by switching the mode of PARP2 recruitment from a predominantly PARP1- and PAR-dependent rapid exchange to a WGR domain-mediated stalling of PARP2 on DNA. Specifically, PARP1-deletion markedly reduces but does not abolish PARP2 foci. The residual PARP2 foci in PARP1-deficient cells are DNA-dependent and abrogated by the R140A mutation in the WGR domain. Yet, PARP2-R140A forms normal foci in PARP1-proficient cells. In PARP1-deficient cells, PARP inhibitors - niraparib, talazoparib, and, to a lesser extent, olaparib - enhance PARP2 foci by preventing PARP2 exchange. This trapping of PARP2 is independent of auto-PARylation and is abolished by the R140A mutation in the WGR domain and the H415A mutation in the catalytic domain. Taken together, we found that PARP inhibitors trap PARP2 by physically stalling PARP2 on DNA via the WGR-DNA interaction while suppressing the PARP1- and PAR-dependent rapid exchange of PARP2.  相似文献   

12.
Nicotinamide adenine dinucleotide, NAD+, is a small metabolite coenzyme that is essential for the progress of crucial cellular pathways including glycolysis, the tricarboxylic acid cycle (TCA) and mitochondrial respiration. These processes consume and produce both oxidative and reduced forms of NAD (NAD+ and NADH). NAD+ is also important for ADP(ribosyl)ation reactions mediated by the ADP-ribosyltransferase enzymes (ARTDs) or deacetylation reactions catalyzed by the sirtuins (SIRTs) which use NAD+ as a substrate. In this review, we highlight the significance of NAD+ catabolism in DNA repair and cell death through its utilization by ARTDs and SIRTs. We summarize the current findings on the involvement of ARTD1 activity in DNA repair and most specifically its involvement in the trigger of cell death mediated by ARTD1 activation and energy depletion. By sharing the same substrate, the activities of ARTDs and SIRTs are tightly linked, are dependent on each other and are thereby involved in the same cellular processes that play an important role in cancer biology, inflammatory diseases and ischaemia/reperfusion.  相似文献   

13.
DNA mismatch repair (MMR) is integral to the maintenance of genomic stability and more recently has been demonstrated to affect apoptosis and cell cycle arrest in response to a variety of adducts induced by exogenous agents. Comparing Msh2-null and wildtype mouse embryonic fibroblasts (MEFs), both primary and transformed, we show that Msh2 deficiency results in increased survival post-UVB, and that UVB-induced apoptosis is significantly reduced in Msh2-deficient cells. Furthermore, p53 phosphorylation at serine 15 is delayed or diminished in Msh2-deficient cells, suggesting that Msh2 may act upstream of p53 in a post-UVB apoptosis or growth arrest response pathway. Taken together, these data suggest that MMR heterodimers containing Msh2 may function as a sensor of UVB-induced DNA damage and influence the initiation of UVB-induced apoptosis, thus implicating MMR in protecting against UV-induced tumorigenesis.  相似文献   

14.
HeLa S3 cells growing in suspension have been used to investigate possible mechanisms underlying the inhibitory action of hyperthermia (44 degrees C) on the repair of DNA strand breaks as caused by a 6-Gy X-irradiation treatment. The role of hyperthermic inactivation of DNA polymerase alpha was investigated using the specific DNA polymerase alpha inhibitor, aphidicolin. It was found that both heat and aphidicolin (greater than or equal to 2 micrograms ml-1) could decrease DNA repair rates in a dose-dependent way. When the applications of heat and aphidicolin were combined, each at nonmaximal doses, no full additivity in effects was observed on DNA repair rates. When the heat and radiation treatment were separated in time by postheat incubation at 37 degrees C, restoration to normal repair kinetics was observed within 8 h after hyperthermia. When heat was combined with aphidicolin addition, restoration of the aphidicolin effect to control level was also observed about 8 h after hyperthermia. It is suggested that although DNA polymerase alpha seems to be involved in the repair of X-ray-induced DNA damage, and although this enzyme is partially inactivated by heat, other forms of heat damage have to be taken into account to explain the observed repair inhibition.  相似文献   

15.
Human DNA mismatch repair (MMR) proteins correct DNA errors and regulate cellular response to DNA damage by signaling apoptosis. Mutations of MMR genes result in genomic instability and cancer development. Nonetheless, how MMR proteins are regulated has not yet been determined. While hMLH1, hPMS2, and hMLH3 are known to participate in MMR, the function of another member of MutL-related proteins, hPMS1, remains unclear. Here we show that DNA damage induces the accumulation of hPMS1, hPMS2, and hMLH1 through ataxia-telangiectasia-mutated (ATM)-mediated protein stabilization. The subcellular localization of PMS proteins is also regulated during DNA damage, which induces nuclear localization of hPMS1 and hPMS2 in an hMLH1-dependent manner. The induced levels of hMLH1 and hPMS1 are important for the augmentation of p53 phosphorylation by ATM in response to DNA damage. These observations identify hMutL proteins as regulators of p53 response and demonstrate for the first time a function of hMLH1-hPMS1 complex in controlling the DNA damage response.  相似文献   

16.
Human exposure to alkylating agents metabolized from tobacco- and food-borne carcinogens occurs regularly. Dietary inorganic compounds such as selenium and vanadium have been shown previously to provide chemoprotective benefits in rat and human trials. Here, we present biochemical data on the ability of inorganic compounds to protect DNA from alkylation damage. An enzyme cleavage assay is used to observe alkylated DNA. Simple salts (e.g., NaCl or NiCl2) did not prevent DNA alkylation, whereas anionic oxo species (e.g., Na2SeO4 or Na3VO4) did inhibit alkylation. We propose that these oxo species behave as nucleophilic targets for the electrophilic alkylating agents, thereby preventing DNA damage.  相似文献   

17.
MAD2 (mitotic arrest deficient 2) is a key regulator of mitosis. Recently, it had been suggested that MAD2-induced mitotic arrest mediates DNA damage response and that upregulation of MAD2 confers sensitivity to DNA-damaging anticancer drug-induced apoptosis. In this study, we report a potential novel role of MAD2 in mediating DNA nucleotide excision repair through physical interactions with two DNA repair proteins, XPD (xeroderma pigmentosum complementation group D) and ERCC1. First, overexpression of MAD2 resulted in decreased nuclear accumulation of XPD, a crucial step in the initiation of DNA repair. Second, immunoprecipitation experiments showed that MAD2 was able to bind to XPD, which led to competitive suppression of binding activity between XPD and XPA, resulting in the prevention of physical interactions between DNA repair proteins. Third, unlike its role in mitosis, the N-terminus domain seemed to be more important in the binding activity between MAD2 and XPD. Fourth, phosphorylation of H2AX, a process that is important for recruitment of DNA repair factors to DNA double-strand breaks, was suppressed in MAD2-overexpressing cells in response to DNA damage. These results suggest a negative role of MAD2 in DNA damage response, which may be accounted for its previously reported role in promoting sensitivity to DNA-damaging agents in cancer cells. However, the interaction between MAD2 and ERCC1 did not show any effect on the binding activity between ERCC1 and XPA in the presence or absence of DNA damage. Our results suggest a novel function of MAD2 by interfering with DNA repair proteins.  相似文献   

18.
Zhu Y  Yang H  Chen Q  Lin J  Grossman HB  Dinney CP  Wu X  Gu J 《DNA Repair》2008,7(2):141-148
XPC, a key protein in the nucleotide excision repair (NER) pathway, recognizes damaged DNA and initiates NER. Genetic variations in the XPC gene might be associated with altered DNA repair capacities (DRC). In this study, we genotyped three XPC polymorphisms, Ala499Val (C-->T), PAT (-/+) and Lys939Gln (A-->C), and measured the DNA damage/DRC by alkaline comet assay challenged by BPDE and gamma-radiation in 476 healthy subjects. We also evaluated the associations between DNA damage/DRC and genotypes of XPC polymorphisms. Compared with the XPC Lys939Gln homozygous wild type (AA) subjects, subjects with the variant alleles (AC and CC) had significantly higher DNA damages induced by BPDE (Median and 95% confidence interval [CI]: 3.16 (3.01-3.44) vs. 2.88 (2.51-3.05), P=0.01), and gamma-radiation (4.18 (3.94-4.44) vs. 3.71 (3.49-4.04), P=0.01). However, subjects with the variant alleles (CT and TT) of Ala499Val exhibited a 8.6% and 13.1% decrease in DNA damages induced by BPDE (P=0.05) and gamma-radiation (P=0.001), respectively. Significant correlations were found between genotypes and induced DNA damages in XPC Lys939Gln (For BPDE: R=0.12, P=0.01; for gamma-radiation: R=0.094, P=0.046) and Ala499Val (For BPDE: R=-0.11, P=0.03; for gamma-radiation: R=-0.16, P=0.0009). The haplotypes "T-A" (in the order of Ala499Val-PAT-Lys939Gln) was associated with the lowest DNA damages. Our results suggested that the DRC of host cells might be modulated by specific XPC polymorphisms.  相似文献   

19.
Inhibition of free radical-induced DNA damage by uric acid   总被引:4,自引:0,他引:4  
Single-strand DNA breaks were produced in isolated rat liver nuclei incubated with 3 separate oxygen free radical generating systems: xanthine oxidase-acetaldehyde plus Fe(II); hematin-R(H)OOH; Fe(II)-H2O2. Uric acid inhibited the induction of damage in the first two systems only. At concentrations below those found in human plasma, it was particularly effective against strand breaks produced by hematin-cumene hydroperoxide. These results offer additional evidence that uric acid may function as a cellular protective agent against superoxide and hydroperoxyl free radical-induced cytotoxicity toxicity.  相似文献   

20.
It was shown that activation of molecular oxygen by Fe2+ in the presence of ascorbate is a caise of human lymphocyte DNA damage. The level of DNA damage caused by activation of oxygen is comparable with the effect of high doses of chemical mutagens. DNA damage is linked with action of activated oxygen but not with generation of lipid radicals. Vitamin E (alpha-tocopherol) added to lymphocytes prevents partly the damaging action of activated oxygen on DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号