首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Tranilast (N-(3′,4′-dimethoxycinnamonyl) anthranilic acid) has been shown to be therapeutically effective, exerting anti-inflammatory and anti-oxidative effects via acting on macrophage. We hypothesized that Tranilast may protect against oxidative stress-induced bone loss via action in osteoclasts (OCs) that shares precursors with macrophage.

Methodology and Principal Findings

To elucidate the role of Tranilast, ovariectomy (OVX)-induced bone loss in vivo and OC differentiation in vitro were evaluated by µCT and tartrate-resistant acid phosphatase staining, respectively. Oral administration of Tranilast protected against OVX-induced bone loss with decreased serum level of reactive oxygen species (ROS) in mice. Tranilast inhibited OC formation in vitro. Decreased osteoclastogenesis by Tranilast was due to a defect of receptor activator of nuclear factor-κB ligand (RANKL) signaling, at least partly via decreased activation of nuclear factor-κB and reduced induction and nuclear translocation of nuclear factor of activated T cells, cytoplasmic 1 (or NFAT2). Tranilast also decreased RANKL-induced a long lasting ROS level as well as TGF-β to inhibit osteoclastogenesis. Reduced ROS caused by Tranilast was due to the induction of ROS scavenging enzymes (peroxiredoxin 1, heme oxygenase-1, and glutathione peroxidase 1) as well as impaired ROS generation.

Conclusions/Significance

Our data suggests the therapeutic potential of Tranilast for amelioration of bone loss and oxidative stress due to loss of ovarian function.  相似文献   

2.

Background

Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L – an established marker and mediator of cardiovascular disease – induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo.

Methodology/Principal Findings

WT or CD40L−/− mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L−/− mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L−/− mice. However, CD40L−/− mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L−/− mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels.

Conclusion

We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.  相似文献   

3.

Objectives

To measure Lewis y antigen and CD44 antigen expression in epithelial ovarian carcinoma and to correlate the levels of these antigens with clinical response to chemotherapy.

Methods

The study cases included 34 cases of ovarian carcinoma with resistance to chemotherapeutic drugs, 6 partially drug-sensitive cases, and 52 drug-sensitive cases (92 total).

Results

The rates of expression of Lewis y antigen and CD44 antigen were significantly greater in the drug-resistant group than that in the partially-sensitive or sensitive groups. Surgical stage, residual tumor size and expression of CD44 and Lewis y antigen in ovarian carcinoma tissues were independent risk factors for chemotherapeutic drug resistance.

Conclusions

Over-expression of Lewis y and CD44 antigen are strong risk factors for chemotherapeutic drug resistance in ovarian carcinoma patients.  相似文献   

4.

Background

Appropriate nutrition during early development is essential for maximal bone mass accretion; however, linkage between early nutrition, childhood bone mass, peak bone mass in adulthood, and prevention of bone loss later in life has not been studied.

Methodology and Principal Findings

In this report, we show that feeding a high quality diet supplemented with blueberries (BB) to pre-pubertal rats throughout development or only between postnatal day 20 (PND20) and PND34 prevented ovariectomy (OVX)-induced bone loss in adult life. This protective effect of BB is due to suppression of osteoblastic cell senescence associated with acute loss of myosin expression after OVX. Early exposure of pre-osteoblasts to serum from BB-fed rats was found to consistently increase myosin expression. This led to maintenance osteoblastic cell development and differentiation and delay of cellular entrance into senescence through regulation of the Runx2 gene. High bone turnover after OVX results in insufficient collagenous matrix support for new osteoblasts and their precursors to express myosin and other cytoskeletal elements required for osteoblast activity and differentiation.

Conclusions/Significance

These results indicate: 1) a significant prevention of OVX-induced bone loss from adult rats can occur with only 14 days consumption of a BB-containing diet immediately prior to puberty; and 2) the molecular mechanisms underlying these effects involves increased myosin production which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence.  相似文献   

5.

Background

Hypoxia and hypoxia-reoxygenation (H-R) are pathogenic factors in many liver diseases that lead to hepatocyte death as a result of reactive oxygen species (ROS) accumulation. The tumor necrosis factor super-family member CD154 can also induce hepatocyte apoptosis via activation of its receptor CD40 and induction of autocrine/paracrine Fas Ligand/CD178 but the relationship between CD40 activation, ROS generation and apoptosis is poorly understood. We hypothesised that CD40 activation and ROS accumulation act synergistically to drive human hepatocyte apoptosis.

Methods

Human hepatocytes were isolated from liver tissue and exposed to an in vitro model of hypoxia and H-R in the presence or absence of CD154 and/or various inhibitors. Hepatocyte ROS production, apoptosis and necrosis were determined by labelling cells with 2′,7′-dichlorofluorescin, Annexin-V and 7-AAD respectively in a three-colour reporter flow cytometry assay.

Results

Exposure of human hepatocytes to recombinant CD154 or platelet-derived soluble CD154 augments ROS accumulation during H-R resulting in NADPH oxidase-dependent apoptosis and necrosis. The inhibition of c-Jun N-terminal Kinase and p38 attenuated CD154-mediated apoptosis but not necrosis.

Conclusions

CD154-mediated apoptosis of hepatocytes involves ROS generation that is amplified during hypoxia-reoxygenation. This finding provides a molecular mechanism to explain the role of platelets in hepatocyte death during ischemia-reperfusion injury.  相似文献   

6.

Background

Enlargement of adipocyte is associated with their dysfunction and alterations in metabolic functions.

Objectives

We evaluated the association of adipocyte size of subcutaneous and omental adipose tissue with body composition and cardiovascular risk factors in Asian Indians.

Methodology

Eighty (40 males and 40 females) non-diabetic adult subjects undergoing elective abdominal surgery were included. Pre-surgery evaluation included anthropometric measurements, % body fat by bioimpedance, abdominal fat area at L2–3 level (computed tomography) and biochemical investigations (fasting blood glucose and insulin, lipids and hsCRP). During surgery, about 5 grams each of omental and subcutaneous adipose tissue was obtained for adipocyte size determination.

Results

Females had higher BMI, % body fat, skinfold thickness, total and subcutaneous abdominal fat area as compared to males. Overweight was present in 42.5% and 67.5%, and abdominal obesity in 5% and 52.5% males and females, respectively. Subcutaneous adipocyte size was significantly higher than omental adipocyte size. Omental adipocyte size correlated more strongly than subcutaneous adipocyte size with measures of adiposity (BMI, waist circumference, %BF), total and subcutaneous abdominal fat area and biochemical measures (fasting glucose, total cholesterol, triglycerides and HOMA-IR), the correlations being stronger in females. The correlation of adipocyte size with metabolic parameters was attenuated after adjusting for measures of adiposity.

Conclusion

Omental adipocyte size, though smaller than the subcutaneous adipocyte size, was more closely related to measures of adiposity and metabolic parameters. However, the relationship was not independent of measures of adiposity.  相似文献   

7.
X Xu  Q Wang  B Deng  H Wang  Z Dong  X Qu  B Kong 《PloS one》2012,7(7):e41869

Background

Decidual stromal cells (DSCs) are of particular importance due to their pleiotropic functions during pregnancy. Although previous research has demonstrated that DSCs participated in the regulation of immune cells during pregnancy, the crosstalk between DSCs and NK cells has not been fully elucidated. To address this issue, we investigated the effect of DSCs on perforin expression in CD56+ NK cells and explored the underlying mechanism.

Methodology/Principal Findings

Flow cytometry analysis showed perforin production in NK cells was attenuated by DSC media, and it was further suppressed by media from DSCs pretreated with lipopolysaccharide (LPS). However, the expression of granzyme A and apoptosis of NK cells were not influenced by DSC media. ELISA assays to detect cytokine production indicated that monocyte chemoattractant protein-1 (MCP-1) in the supernatant of DSCs conditioned culture significantly increased after LPS stimulation. The inhibitory effect of DSC media on perforin was abolished by the administration of anti-MCP-1 neutralizing antibody. Notably, reduced perforin expression attenuated the cytotoxic potential of CD56+NK cells to K562 cells. Moreover, Suppressor of cytokine signaling 3 (SOCS3) expression in NK cells was enhanced by treatment with MCP-1, as measured by RT-PCR and western blot. Interestingly, MCP-1-induced perforin expression was partly abolished by the siRNA induced SOCS3 knockdown. Western blot analysis suggested that both NF-κB and ERK/MAPKs pathway were involved in the LPS-induced upregulation of MCP-1 in DSCs.

Conclusions/Significance

Our results demonstrate that LPS induces upregulation of MCP-1 in DSCs, which may play a critical role in inhibiting the cytotoxicity of NK cells partly by promoting SOCS3 expression. These findings suggest that the crosstalk between DSCs and NK cells may be crucial to maintain pregnancy homeostasis.  相似文献   

8.

Background

Although inflammation within adipose tissues is known to play a role in metabolic syndrome, the causative connection between inflamed adipose tissue and atherosclerosis is not fully understood. In the present study, we examined the direct effects of adipose tissue on macro-vascular inflammation using intravital microscopic analysis of the femoral artery after adipose tissue transplantation.

Methods and Results

We obtained subcutaneous (SQ) and visceral (VIS) adipose tissues from C57BL/6 mice fed normal chow (NC) or a high fat diet (HF), then transplanted the tissues into the perivascular area of the femoral artery of recipient C57/BL6 mice. Quantitative intravital microscopic analysis revealed an increase in adherent leukocytes after adipose tissue transplantation, with VIS found to induce significantly more leukocyte accumulation as compared to SQ. Moreover, adipose tissues from HF fed mice showed significantly more adhesion to the femoral artery. Simultaneous flow cytometry demonstrated upregulation of CD11b on peripheral granulocyte and monocytes after adipose tissue transplantation. We also observed dominant expressions of the inflammatory cytokine IL-6, and chemokines MCP-1 and MIP-1β in the stromal vascular fraction (SVF) of these adipose tissues as well as sera of recipient mice after transplantation. Finally, massive accumulations of pro-inflammatory and dendritic cells were detected in mice with VIS transplantation as compared to SQ, as well as in HF mice as compared to those fed NC.

Conclusion

Our in vivo findings indicate that adipose tissue stimulates leukocyte accumulation in the femoral artery. The underlying mechanisms involve upregulation of CD11b in leukocytes, induction of cytokines and chemokines, and accumulation of pro-inflammatory cells in the SVF.  相似文献   

9.

Aims

Obesity and type 2 diabetes are characterised by low-grade inflammation, metabolic endotoxaemia (i.e., increased plasma lipopolysaccharides [LPS] levels) and altered endocannabinoid (eCB)-system tone. The aim of this study was to decipher the specific role of eCB-system stimulation or metabolic endotoxaemia in the onset of glucose intolerance, metabolic inflammation and altered lipid metabolism.

Methods

Mice were treated with either a cannabinoid (CB) receptor agonist (HU210) or low-dose LPS using subcutaneous mini-pumps for 6 weeks. After 3 weeks of the treatment under control (CT) diet, one-half of each group of mice were challenged with a high fat (HF) diet for the following 3-week period.

Results

Under basal conditions (control diet), chronic CB receptor agonist treatment (i.e., 6 weeks) induced glucose intolerance, stimulated metabolic endotoxaemia, and increased macrophage infiltration (CD11c and F4/80 expression) in the muscles; this phenomenon was associated with an altered lipid metabolism (increased PGC-1α expression and decreased CPT-1b expression) in this tissue. Chronic LPS treatment tended to increase the body weight and fat mass, with minor effects on the other metabolic parameters. Challenging mice with an HF diet following pre-treatment with the CB agonist exacerbated the HF diet-induced glucose intolerance, the muscle macrophage infiltration and the muscle''s lipid content without affecting the body weight or the fat mass.

Conclusion

Chronic CB receptor stimulation under basal conditions induces glucose intolerance, stimulates metabolic inflammation and alters lipid metabolism in the muscles. These effects worsen following the concomitant ingestion of an HF diet. Here, we highlight the central roles played by the eCB system and LPS in the pathophysiology of several hallmarks of obesity and type 2 diabetes.  相似文献   

10.

Purpose

The purpose of this study was to determine the interaction effects of aerobic exercise training and vitamin D supplementation on indices of obesity and plasma lipid profiles in ovariectomized (OVX) rats.

Methods

Forty female Wistar rats were divided into 5 groups: aerobic training (3 days/week for 8 weeks; AT; n = 8), aerobic training and vitamin D supplementation (OVX + AT + Vit D; n = 8), vitamin D supplementation (OVX + Vit D; n = 8), ovariectomized control (OVX + C, n = 8) and SHAM (n = 8). After blood sampling, visceral fat was taken from the abdominal cavity and weighed immediately. Data was statistically analyzed by One-way ANOVA and Repeated measure ANOVA tests with a 0.05 significance level.

Results

Body weight, visceral fat, BMI and food intake decreased significantly in OVX + AT + Vit D (P < 0.001); whereas these variables increased significantly in OVX + C (P < 0.001) and SHAM (P < 0.023) groups. At the end of two-months of follow-up, we observed significant differences in TC, TG, HDL-C, LDL-C, glucose, insulin, and HOMA-IR in all groups.

Conclusion

It seems that aerobic training with vitamin D, due to the involvement of muscle mass and exposure to dynamic pressure on the bones and muscles, increased energy expenditure, stimulated insulin exudation and glucose homeostasis, decreased insulin resistance and improved the lipid profile in ovariectomized rats.  相似文献   

11.

Background

Among a variety of inflammatory mediators, visfatin is a proinflammatory adipocytokine associated with inflammatory reactions in obesity, metabolic syndrome, chronic inflammatory disease, and autoimmune disease. However, the biological role of visfatin in secretion of major mucins in human airway epithelial cells has not been reported. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of visfatin on MUC8 and MUC5B expression in human airway epithelial cells.

Results

Visfatin significantly induced MUC8 and MUC5B expression. Visfatin significantly activated phosphorylation of p38 MAPK. Treatment with SB203580 (p38 MAPK inhibitor) and knockdown of p38 MAPK by siRNA significantly blocked visfatin-induced MUC8 and MUC5B expression.Visfatin significantly increased ROS formation. Treatment with SB203580 significantly attenuated visfatin-induced ROS formation. Treatment with NAC (ROS scavenger) and DPI (NADPH oxidase inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression. However, treatment with NAC and DPI did not attenuate visfatin-activated phosphorylation of p38 MAPK. Visfatin significantly activated the phosphorylation of NF-κB. Treatment with PDTC (NF-κB inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression.

Conclusions

These results suggest that visfatin induces MUC8 and MUC5B expression through p38 MAPK/ROS/NF-κB signaling pathway in human airway epithelial cells.  相似文献   

12.

Purpose

Collagen peptides (CPs) and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone.

Methods

Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8) for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX) as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg); OVX + calcium citrate (75 mg/kg). After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers.

Results

OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels.

Conclusions

Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.  相似文献   

13.
Yung LM  Wong WT  Tian XY  Leung FP  Yung LH  Chen ZY  Yao X  Lau CW  Huang Y 《PloS one》2011,6(3):e17437

Background

Estrogen deficiency increases the cardiovascular risks in postmenopausal women. Inhibition of the renin-angiotensin system (RAS) and associated oxidative stress confers a cardiovascular protection, but the role of RAS in estrogen deficiency-related vascular dysfunction is unclear. The present study investigates whether the up-regulation of RAS and associated oxidative stress contributes to the development of endothelial dysfunction during estrogen deficiency in ovariectomized (OVX) rats.

Methodology/Principal Findings

Adult female rats were ovariectomized with and without chronic treatment with valsartan and enalapril. Isometric force measurement was performed in isolated aortae. The expression of RAS components was determined by immunohistochemistry and Western blotting method while ROS accumulation in the vascular wall was evaluated by dihydroethidium fluorescence. Ovariectomy increased the expression of angiotensin-converting enzyme (ACE), angiotensin II type 1 receptor (AT1R), NAD(P)H oxidase, and nitrotyrosine in the rat aorta. An over-production of angiotensin II and ROS was accompanied by decreased phosphorylation of eNOS at Ser1177 in OVX rat aortae. These pathophysiological changes were closely coupled with increased oxidative stress and decreased nitric oxide bioavailability, culminating in markedly impaired endothelium-dependent relaxations. Furthermore, endothelial dysfunction and increased oxidative stress in aortae of OVX rats were inhibited or reversed by chronic RAS inhibition with enalapril or valsartan.

Conclusions/Significance

The novel findings highlight a significant therapeutic benefit of RAS blockade in the treatment of endothelial dysfunction-related vascular complications in postmenopausal states.  相似文献   

14.

Background

Long-term remission of HIV-1 disease can be readily achieved by combinations of highly effective antiretroviral therapy (HAART). However, a residual persistent immune activation caused by circulating non infectious particles or viral proteins is observed under HAART and might contribute to an higher risk of non-AIDS pathologies and death in HIV infected persons. A sustained immune activation supports lipid dysmetabolism and increased risk for development of accelerated atehrosclerosis and ischemic complication in virologically suppressed HIV-infected persons receiving HAART.

Aim

While several HIV proteins have been identified and characterized for their ability to maintain immune activation, the role of HIV-p17, a matrix protein involved in the viral replication, is still undefined.

Results

Here, we report that exposure of macrophages to recombinant human p17 induces the expression of proinflammatory and proatherogenic genes (MCP-1, ICAM-1, CD40, CD86 and CD36) while downregulating the expression of nuclear receptors (FXR and PPARγ) that counter-regulate the proinflammatory response and modulate lipid metabolism in these cells. Exposure of macrophage cell lines to p17 activates a signaling pathway mediated by Rack-1/Jak-1/STAT-1 and causes a promoter-dependent regulation of STAT-1 target genes. These effects are abrogated by sera obtained from HIV-infected persons vaccinated with a p17 peptide. Ligands for FXR and PPARγ counteract the effects of p17.

Conclusions

The results of this study show that HIV p17 highjacks a Rack-1/Jak-1/STAT-1 pathway in macrophages, and that the activation of this pathway leads to a simultaneous dysregulation of immune and metabolic functions. The binding of STAT-1 to specific responsive elements in the promoter of PPARγ and FXR and MCP-1 shifts macrophages toward a pro-atherogenetic phenotype characterized by high levels of expression of the scavenger receptor CD36. The present work identifies p17 as a novel target in HIV therapy and grounds the development of anti-p17 small molecules or vaccines.  相似文献   

15.

Purpose

Tumor infiltrating CD4+CD25+FoxP3+ regulatory immune cells (Treg) have been associated with impaired anti- tumor immune response and unfavorable prognosis for patients affected by ovarian carcinoma, whereas CD8+ T-cells have been found to positively influence survival rates in a large panel of solid tumors. Recently, density, location and tumor infiltration patterns of the respective immune cell subtypes have been identified as key prognostic factors for different types of tumors.

Patients and Methods

We stained 210 human ovarian carcinoma samples immunhistochemically for FoxP3 and CD8 to identify the impact different immune cell patterns have on generally accepted prognostic variables as well as on overall survival.

Results

We found that FoxP3+ cells located within lymphoid aggregates surrounding the tumor were strongly associated with reduced survival time (P = 0.007). Central accumulation of CD8+ effector cells within the tumor bed shows a positive effect on survival (P = 0,001).

Conclusion

The distribution pattern of immune cells within the tumor environment strongly influences prognosis and overall survival time of patients with ovarian carcinoma.  相似文献   

16.

Context

Plasma total cysteine (tCys) independently relates to fat mass in adults. Dietary cyst(e)ine promotes adiposity and decreases glucose tolerance in some rodent models, but alleviates insulin resistance in others.

Objective

To investigate whether the association of tCys with body fat extends to children at particular risk of obesity, and whether tCys is associated with insulin resistance and obesity-associated inflammation.

Methods

We explored the cross-sectional relations of fasting plasma tCys and related metabolites with body composition measured by dual-energy X-ray absorptiometry in 984 Hispanic children and adolescents aged 4–19 years from the Viva La Familia Study. Linear and logistic regression and dose-response curves were used to evaluate relations of tCys with obesity, insulin resistance and inflammatory markers including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-reactive protein (CRP).

Results

tCys, methionine and total homocysteine (tHcy) increased with age. Upper tCys quartile was independently associated with a 5-fold increased risk of obesity (95% CI 3.5–8.0, P<0.001), and 2-fold risk of insulin resistance (95% CI: 1.6-5.0, P<0.001; adjusted for body fat%). Within the overweight/obese subgroup, but not in normal-weight children, tCys accounted for 9% of the variability in body fat% (partial r = 0.30, P<0.001; adjusted for age and gender). tCys correlated positively with serum non-esterified fatty acids and leptin, partly independent of body fat, but was not associated with serum IL-6, TNF-α or MCP-1. A positive correlation with CRP disappeared after adjustment for BMI.

Conclusion

tCys is independently associated with obesity and insulin resistance in Hispanic children and adolescents, highlighting a previously underappreciated link between the sulfur amino acid metabolic pathway and obesity and cardiometabolic risk.  相似文献   

17.

Background

While prepubertal nutritional influences appear to play a role in sexual maturation, there is a need to clarify the potential contributions of maternal and childhood influences in setting the tempo of reproductive maturation. In the present study we employed an established model of nutritional programming to evaluate the relative influences of prenatal and postnatal nutrition on growth and ovarian function in female offspring.

Methods

Pregnant Wistar rats were fed either a calorie-restricted diet, a high fat diet, or a control diet during pregnancy and/or lactation. Offspring then were fed either a control or a high fat diet from the time of weaning to adulthood. Pubertal age was monitored and blood samples collected in adulthood for endocrine analyses.

Results

We report that in the female rat, pubertal timing and subsequent ovarian function is influenced by the animal''s nutritional status in utero, with both maternal caloric restriction and maternal high fat nutrition resulting in early pubertal onset. Depending on the offspring''s nutritional history during the prenatal and lactational periods, subsequent nutrition and body weight gain did not further influence offspring reproductive tempo, which was dominated by the effect of prenatal nutrition. Whereas maternal calorie restriction leads to early pubertal onset, it also leads to a reduction in adult progesterone levels later in life. In contrast, we found that maternal high fat feeding which also induces early maturation in offspring was associated with elevated progesterone concentrations.

Conclusions

These observations are suggestive of two distinct developmental pathways leading to the acceleration of pubertal timing but with different consequences for ovarian function. We suggest different adaptive explanations for these pathways and for their relationship to altered metabolic homeostasis.  相似文献   

18.

Objectives

to assess the cardioprotective properties of a blueberry enriched diet (BD).

Background

Reactive oxygen species (ROS) play a major role in ischemia-related myocardial injury. The attempts to use synthetic antioxidants to block the detrimental effects of ROS have produced mixed or negative results precipitating the interest in natural products. Blueberries are readily available product with the highest antioxidant capacity among fruits and vegetables.

Methods and Results

Following 3-mo of BD or a regular control diet (CD), the threshold for mitochondrial permeability transition (tMPT) was measured in isolated cardiomyocytes obtained from young male Fischer-344 rats. Compared to CD, BD resulted in a 24% increase (p<0.001) of ROS indexed tMPT. The remaining animals were subjected to a permanent ligation of the left descending coronary artery. 24 hrs later resulting myocardial infarction (MI) in rats on BD was 22% less than in CD rats (p<0.01). Significantly less TUNEL(+) cardiomyocytes (2% vs 9%) and 40% less inflammation cells were observed in the myocardial area at risk of BD compared to CD rats (p<0.01). In the subgroup of rats, after coronary ligation the original diet was either continued or switched to the opposite one, and cardiac remodeling and MI expansion were followed by serial echocardiography for 10 weeks. Measurements suggested that continuation of BD or its withdrawal after MI attenuated or accelerated rates of post MI cardiac remodeling and MI expansion.

Conclusion

A blueberry-enriched diet protected the myocardium from induced ischemic damage and demonstrated the potential to attenuate the development of post MI chronic heart failure.  相似文献   

19.

Background

Adipocytes from mesenteric white adipose tissue amplify the inflammatory response and participate in inflammation-driven immune dysfunction in Crohn''s disease by releasing proinflammatory mediators. Peroxisome proliferator-activated receptors (PPAR)-α and -γ, pregnane x receptor (PXR), farnesoid x receptor (FXR) and liver x-receptor (LXR) are ligand-activated nuclear receptor that provide counter-regulatory signals to dysregulated immunity and modulates adipose tissue.

Aims

To investigate the expression and function of nuclear receptors in intestinal and adipose tissues in a rodent model of colitis and mesenteric fat from Crohn''s patients and to investigate their modulation by probiotics.

Methods

Colitis was induced by TNBS administration. Mice were administered vehicle or VSL#3, daily for 10 days. Abdominal fat explants obtained at surgery from five Crohn''s disease patients and five patients with colon cancer were cultured with VSL#3 medium.

Results

Probiotic administration attenuated development of signs and symptoms of colitis, reduced colonic expression of TNFα, IL-6 and IFNγ and reserved colonic downregulation of PPARγ, PXR and FXR caused by TNBS. Mesenteric fat depots isolated from TNBS-treated animals had increased expression of inflammatory mediators along with PPARγ, FXR, leptin and adiponectin. These changes were prevented by VSL#3. Creeping fat and mesenteric adipose tissue from Crohn''s patients showed a differential expression of PPARγ and FXR with both tissue expressing high levels of leptin. Exposure of these tissues to VSL#3 medium abrogates leptin release.

Conclusions

Mesenteric adipose tissue from rodent colitis and Crohn''s disease is metabolically active and shows inflammation-driven regulation of PPARγ, FXR and leptin. Probiotics correct the inflammation-driven metabolic dysfunction.  相似文献   

20.

Background

Vaccinia viruses have been used as a model for viral disease and as a protective live vaccine.

Methodology and Principal Findings

We investigated the immunogenicity of an attenuated strain of vaccinia virus engineered to inactivate the N1L gene (vGK5). Using the intranasal route, this recombinant virus was 2 logs less virulent compared to the wildtype VACV-WR. Infection by the intranasal, intraperitoneal, and tail scarification routes resulted in the robust induction of cytolytic virus-specific CD8 T cells in the spleens and the lungs. VACV-specific antibodies were also detected in the sera of mice infected 3–5 months prior with the attenuated vGK5 virus. Finally, mice immunized with vGK5 were significantly protected when challenged with a lethal dose of VACV-WR.

Conclusions

These results indicate that the attenuated vGK5 virus protects against subsequent infection and suggest that the N1L protein limits the strength of the early antiviral CD8 T cell response following respiratory infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号