共查询到20条相似文献,搜索用时 0 毫秒
1.
Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil® or Caelyx®, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor. 相似文献
3.
Tumor metastasis is the major cause of death from ovarian cancer. Therefore, targeted therapy, which could prevent the ability of cells to metastasize to different organs, is an effective treatment for ovarian cancer at present. Previous study indicated that the peptide WSGPGVWGASVK (WSG) inhibited the adhesive ability of SK-OV-3 to extracellular matrix. For further study, we have investigated the effects of the peptide WSG on the ovarian cancer cell migration. Results showed that WSG peptide promoted the migration of SK-OV-3 and HUVEC cells through regulating the expression of talin and ( p)-paxilin protein. Besides, WSG peptide inhibited the SK-OV-3 viability. The expression of human matrix metalloproteinase MMP-2 and MMP-9 of SK-OV-3 cells was inhibited. All these results suggested that peptide WSG might be used in ovarian cancer therapy. 相似文献
4.
Lung cancer is the leading cause of cancer-related mortality worldwide. The lack of tumor specificity remains a major drawback for effective chemotherapies and results in dose-limiting toxicities. However, a ligand-mediated drug delivery system should be able to render chemotherapy more specific to tumor cells and less toxic to normal tissues. In this study, we isolated a novel peptide ligand from a phage-displayed peptide library that bound to non-small cell lung cancer (NSCLC) cell lines. The targeting phage bound to several NSCLC cell lines but not to normal cells. Both the targeting phage and the synthetic peptide recognized the surgical specimens of NSCLC with a positive rate of 75% (27 of 36 specimens). In severe combined immunodeficiency (SCID) mice bearing NSCLC xenografts, the targeting phage specifically bound to tumor masses. The tumor homing ability of the targeting phage was inhibited by the cognate synthetic peptide, but not by a control or a WTY-mutated peptide. When the targeting peptide was coupled to liposomes carrying doxorubicin or vinorelbine, the therapeutic index of the chemotherapeutic agents and the survival rates of mice with human lung cancer xenografts markedly increased. Furthermore, the targeting liposomes increased drug accumulation in tumor tissues by 5.7-fold compared with free drugs and enhanced cancer cell apoptosis resulting from a higher concentration of bioavailable doxorubicin. The current study suggests that this tumor-specific peptide may be used to create chemotherapies specifically targeting tumor cells in the treatment of NSCLC and to design targeted gene transfer vectors or it may be used one in the diagnosis of this malignancy. 相似文献
5.
Background and ObjectivesProstate cancer (PCa) is one of the most common cancers and leading cause of cancer-related deaths in men. Mass screening has been carried out since the 1990s using prostate-specific antigen (PSA) levels in the serum as a PCa biomarker. However, although PSA is an excellent organ-specific marker, it is not a cancer-specific marker. Therefore, the aim of this study was to discover new biomarkers for the diagnosis of PCa. Materials and MethodsWe focused on urine samples voided following prostate massage (digital rectal examination [DRE]) and conducted a peptidomic analysis of these samples using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS n). Urinary biomaterials were concentrated and desalted using CM-Sepharose prior to the following analyses being performed by MALDI-TOF/MS n: 1) differential analyses of mass spectra; 2) determination of amino acid sequences; and 3) quantitative analyses using a stable isotope-labeled internal standard. ResultsMultivariate analysis of the MALDI-TOF/MS mass spectra of urinary extracts revealed a 2331 Da peptide in urine samples following DRE. This peptide was identified as a C-terminal PSA fragment composed of 19 amino acid residues. Moreover, quantitative analysis of the relationship between isotope-labeled synthetic and intact peptides using MALDI-TOF/MS revealed that this peptide may be a new pathognomonic biomarker candidate that can differentiate PCa patients from non-cancer subjects. ConclusionThe results of the present study indicate that the 2331 Da peptide fragment of PSA may become a new pathognomonic biomarker for the diagnosis of PCa. A further large-scale investigation is currently underway to assess the possibility of using this peptide in the early detection of PCa. 相似文献
6.
In anti-cancer therapy mediated by a nanoparticle-based drug delivery system (DDS), overall efficacy depends on the release efficiency of cargos from the nanoparticles in the cancer cells as well as the specificity of delivery to tumor tissue. However, conventional liposome-based DDS have no mechanism for specifically releasing the encapsulated cargos inside the cancer cells. To overcome this barrier, we developed nanoparticles containing a novel liposomal membrane destabilization peptide (LMDP) that can destabilize membranes by cleavage with intramembranous proteases on/in cancer cells. Calcein encapsulated in liposomes modified with LMDP (LMDP-lipo) was effectively released in the presence of a membrane fraction containing an LMDP-cleavable protease. The release was inhibited by a protease inhibitor, suggesting that LMDP-lipo could effectively release its cargo into cells in response to a cancer-specific protease. Moreover, when LMDP-lipo contained fusogenic lipids, the release of cargo was accelerated, suggesting that the fusion of LMDP-lipo with cellular membranes was the initial step in the intracellular delivery. Time-lapse microscopic observations showed that the release of cargo from LMDP-lipo occurred immediately after association of LMDP-lipo with target cells. Consequently, LMDP-lipo could be a useful nanoparticle capable of effective release of cargos specifically into targeted cancer cells. 相似文献
7.
Peptides selected from phage display have great potential to become probes for the imaging detection of the cancer. To develop the peptide probe for diagnosis of GC, a 12-mer phage display library was used to select peptides that bind specifically to the human GC cell line SGC-7901. After four rounds of in vitro selection, five phage clones that bound specifically to the SGC-7901 cells were selected. The phage clone GP-5 had a particularly high affinity and specificity for SGC-7901 cells. This clone was identified using a series of methods. The peptide GP-5 that was displayed on phage GP-5 exhibited high specificity to SGC-7901 cells and gastric tissues. Thus, the peptide GP-5 displays excellent potential for imaging detection of human gastric cancer. 相似文献
8.
BackgroundExtensive prostate specific antigen screening for prostate cancer generates a high number of unnecessary biopsies and over-treatment due to insufficient differentiation between indolent and aggressive tumours. We hypothesized that seminal plasma is a robust source of novel prostate cancer (PCa) biomarkers with the potential to improve primary diagnosis of and to distinguish advanced from indolent disease. Methodology/Principal FindingsIn an open-label case/control study 125 patients (70 PCa, 21 benign prostate hyperplasia, 25 chronic prostatitis, 9 healthy controls) were enrolled in 3 centres. Biomarker panels a) for PCa diagnosis (comparison of PCa patients versus benign controls) and b) for advanced disease (comparison of patients with post surgery Gleason score <7 versus Gleason score >7) were sought. Independent cohorts were used for proteomic biomarker discovery and testing the performance of the identified biomarker profiles. Seminal plasma was profiled using capillary electrophoresis mass spectrometry. Pre-analytical stability and analytical precision of the proteome analysis were determined. Support vector machine learning was used for classification. Stepwise application of two biomarker signatures with 21 and 5 biomarkers provided 83% sensitivity and 67% specificity for PCa detection in a test set of samples. A panel of 11 biomarkers for advanced disease discriminated between patients with Gleason score 7 and organ-confined (<pT3a) or advanced (≥pT3a) disease with 80% sensitivity and 82% specificity in a preliminary validation setting. Seminal profiles showed excellent pre-analytical stability. Eight biomarkers were identified as fragments of N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase, prostatic acid phosphatase, stabilin-2, GTPase IMAP family member 6, semenogelin-1 and -2. Restricted sample size was the major limitation of the study. Conclusions/SignificanceSeminal plasma represents a robust source of potential peptide makers for primary PCa diagnosis. Our findings warrant further prospective validation to confirm the diagnostic potential of identified seminal biomarker candidates. 相似文献
9.
The feasibility of exploiting secretory phospholipase A 2 (sPLA 2) enzymes, which are overexpressed in tumors, to activate drug release from liposomes precisely at the tumor site has been demonstrated before. Although the efficacy of the developed formulations was evaluated using in vitro and in vivo models, the pattern of sPLA 2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA 2-triggered release of luciferin from liposomes. To this end, we engineered breast cancer cells to produce both luciferase and sPLA 2 enzymes, where the latter is secreted to the extracellular medium. We report on setting up a robust and reproducible bioassay for testing sPLA 2-sensitive, luciferin remote-loaded liposomal formulations, using 1,2-distearoyl- sn-glycero-3-phosphatidylcholine/1,2-distearoyl- sn-glycero-3-phosphatidylglycerol (DSPC/DSPG) 7:3 and DSPC/DSPG/cholesterol 4:3:3 as initial test systems. Upon their addition to the cells, the liposomes were degraded almost instantaneously by sPLA 2 releasing the encapsulated luciferin, which provided readout from the luciferase-expressing cells. Cholesterol enhanced the integrity of the formulation without affecting its susceptibility to sPLA 2. PEGylation of the liposomes only moderately broadened the release profile of luciferin. The provided bioassay represents a useful tool for monitoring active drug release in situ in real time as well as for testing and optimizing of sPLA 2-sensitive lipid formulations. In addition, the bioassay will pave the way for future in-depth in vitro and in vivo studies. 相似文献
10.
Previously we reported the first example of peptide mimics of a small hydrophobic molecule, a phytohormone gibberellin. The second peptide mimic of gibberellin has been identified from random peptide libraries by its affinity to a type of catalyzing enzyme of gibberellins, which specifically recognizes bioactive gibberellins. These results suggest that even hydrophobic compounds can be mimicked by peptides. 相似文献
11.
The fopA gene encoding a fructooligosaccharide-producing β-fructofuranosidase was isolated from Aspergillus niger ATCC 20611. The primary structure deduced from the nucleotide sequence showed considerable similarity to those of two other β-fructofuranosidases from A. niger, but the fopA gene product had several amino acid insertions and an extra C-terminal polypeptide consisting of 38 amino acids that could not be found in the two others. We could successfully express the fopA gene in S. cerevisiae and the fopA gene product obtained from the culture supernatant of the S. cerevisiae transformant had similar characteristics to the β-fructofuranosidase purified from A. niger ATCC 20611. However, we could not detect any β-fructofuranosidase activity in either the culture supernatant or cell lysate when the C-terminal truncated fopA gene product by 38 amino acids was used to transform S. cerevisiae. In western analysis of those samples, there was no protein product that is cross-reacted with anti-β-fructofuranosidase antibody. These results suggested that the C-terminal region of the fopA gene product consisting of 38 amino acids was essential for the enzyme production. 相似文献
12.
Sleep, a reversible quiescent state found in both invertebrate and vertebrate animals, disconnects animals from their environment and is highly regulated for coordination with wakeful activities, such as reproduction. The fruit fly, Drosophila melanogaster, has proven to be a valuable model for studying the regulation of sleep by circadian clock and homeostatic mechanisms. Here, we demonstrate that the sex peptide receptor (SPR) of Drosophila, known for its role in female reproduction, is also important in stabilizing sleep in both males and females. Mutants lacking either the SPR or its central ligand, myoinhibitory peptide (MIP), fall asleep normally, but have difficulty in maintaining a sleep-like state. Our analyses have mapped the SPR sleep function to pigment dispersing factor ( pdf) neurons, an arousal center in the insect brain. MIP downregulates intracellular cAMP levels in pdf neurons through the SPR. MIP is released centrally before and during night-time sleep, when the sleep drive is elevated. Sleep deprivation during the night facilitates MIP secretion from specific brain neurons innervating pdf neurons. Moreover, flies lacking either SPR or MIP cannot recover sleep after the night-time sleep deprivation. These results delineate a central neuropeptide circuit that stabilizes the sleep state by feeding a slow-acting inhibitory input into the arousal system and plays an important role in sleep homeostasis. 相似文献
13.
To select specific binding peptides for imaging and detection of human ovarian cancer. The phage 12-mer peptide library was used to select specific phage clones to ovarian cancer cells. After four rounds of biopanning, the binding specificity of randomly selected phage clones to ovarian cancer cells was determined by enzyme-linked immunosorbent assay (ELISA). DNA sequencing and homology analysis were performed on specifically bound phages. The binding ability of the selected peptides to SKOV3 cells was confirmed by fluorescence microscopy and flow cytometry. After four rounds of optimized biological panning, phage recovery was 34-fold higher than that of the first round, and the specific phage clones bound to SKOV3 cells were significantly enriched. A total of 32 positive phage clones were preliminarily identified by ELISA from 54 randomly selected clones, and the positive rate was 59.3%. S36 was identified as the clone with best affinity to SKOV3 cells via fluorescence microscopy and flow cytometry. A representative clone of OSP2, S36 is expected to be an effective probe for diagnosis and treatment of ovarian cancer. 相似文献
14.
International Journal of Peptide Research and Therapeutics - The lysosomal endoprotease legumain (asparaginyl endoprotease) has been proposed as a putative biomarker in prostate tumours, in which... 相似文献
15.
In view of the explosion of the present clinical use of monoclonal antibodies (mAbs), not only in the treatment of cancer, but also of autoimmune diseases, I was asked to review the development of mAbs in tumor diagnosis and therapy, with some illustrations of our own contribution in the field. The initial use of radiolabeled mAbs for tumor targeting and radioimmunotherapy led to the extensive clinical application of unlabeled, “humanized” mAbs for cancer therapy, which I describe with a critical perspective. The introduction of recombinant bispecific antibodies, capable of bridging T lymphocytes with tumor cells and inducing killing of the cancer cells, was found to be mostly active in the treatment of hematological malignancies. Most interestingly, the use of mAbs not directed to the tumor cells, but to inhibitory receptors expressed by cytotoxic T lymphocytes, which trigger them to kill the cancer cells, represents a new form of active cancer immunotherapy. My motivation in writing this review was related to my long-term interactions with several Russian scientists, mentioned at the end of this article. 相似文献
16.
Mitochondrial dysfunction has been long proposed to play a major role in tumorigenesis. Mitochondrial DNA (mtDNA) mutations, especially the mtDNA 4,977 bp deletion has been found in patients of various types of cancer. In order to comprehend the mtDNA 4,977 bp deletion status in various cancer types, we performed a meta-analysis composed of 33 publications, in which a total of 1613 cancer cases, 1516 adjacent normals and 638 healthy controls were included. When all studies were pooled, we found that cancerous tissue carried a lower mtDNA 4,977 bp deletion frequency than adjacent non-cancerous tissue (OR = 0.43, 95% CI = 0.20–0.92, P = 0.03 for heterogeneity test, I2 = 91.5%) among various types of cancer. In the stratified analysis by cancer type the deletion frequency was even lower in tumor tissue than in adjacent normal tissue of breast cancer (OR = 0.19, 95% CI = 0.06–0.61, P = 0.005 for heterogeneity test, I2 = 82.7%). Interestingly, this observation became more significant in the stratified studies with larger sample sizes (OR = 0.70, 95% CI = 0.58–0.86, P = 0.0005 for heterogeneity test, I2 = 95.1%). Furthermore, when compared with the normal tissue from the matched healthy controls, increased deletion frequencies were observed in both adjacent non-cancerous tissue (OR = 3.02, 95% CI = 2.13–4.28, P<0.00001 for heterogeneity test, I2 = 53.7%), and cancerous tissue (OR = 1.36, 95% CI = 1.04–1.77, P = 0.02 for heterogeneity test, I2 = 83.5%). This meta-analysis suggests that the mtDNA 4,977 bp deletion is often found in cancerous tissue and thus has the potential to be a biomarker for cancer occurrence in the tissue, but at the same time being selected against in various types of carcinoma tissues. Larger and better-designed studies are still warranted to confirm these findings. 相似文献
17.
BackgroundSurvivin is expressed in prostate cancer (PCa), and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment. MethodsExosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively. ResultsSurvivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six) or high (nine) Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls. ConclusionsThese studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection. 相似文献
18.
BackgroundBreast cancer is the second leading cause of cancer related deaths in women worldwide. Reports about the early diagnosis of breast cancer are suggestive of an improved clinical outcome and overall survival rate in cancer patients. Therefore, cancer screening biomarker for early detection and diagnosis is urgently required for timely treatment and better cancer management. In this context, we investigated an association of cancer testis antigen, A-Kinase anchor protein 4 (AKAP4) with breast carcinoma. Methodology/FindingsWe first compared the AKAP4 gene and protein expression in four breast cancer cells (MCF7, MDA-MB-231, SK-BR3 and BT474) and normal human mammary epithelial cells. In addition, 91 clinical specimens of breast cancer patients of various histotypes including ductal carcinoma in situ, infiltrating ductal carcinoma and infiltrating lobular carcinoma and 83 available matched adjacent non-cancerous tissues were examined for AKAP4 gene and protein expression by employing in situ RNA hybridization and immunohistochemistry respectively. Humoral response against AKAP4 was also investigated in breast cancer patients employing ELISA. Our in vitro studies in all breast cancer cells revealed AKAP4 gene and protein expression whereas, normal human mammary epithelial cells failed to show any expression. Using in situ RNA hybridization and immunohistochemistry, 85% (77/91) tissue specimens irrespective of histotypes, stages and grades of breast cancer clinical specimens revealed AKAP4 gene and protein expression. However, matched adjacent non-cancerous tissues failed to display any AKAP4 gene and protein expression. Furthermore, humoral response was observed in 79% (72/91) of total breast cancer patients. Interestingly, we observed that 94% (72/77) of breast cancer patients found positive for AKAP4 protein expression generated humoral response against AKAP4 protein. ConclusionsCollectively, our data suggests that AKAP4 may be used as serum based diagnostic test for an early detection and diagnosis of breast cancer and may be a potential target for immunotherapeutic use. 相似文献
19.
Patients who undergo surgical extirpation of a primary liver carcinoma followed by radiotherapy and chemotherapy leading to complete remission are nevertheless known to develop cancerous metastases 3–10 years later. We retrospectively examined the blood sera collected over 8 years from 30 patients who developed bone metastases after the complete remission of liver cancer to identify serum proteins showing differential expression compared to patients without remission. We detected a novel RGD (Arg-Gly-Asp)-containing peptide derived from the C-terminal portion of fibrinogen in the sera of metastatic patients that appeared to control the EMT (epithelial-mesenchymal transition) of cancer cells, in a process associated with miR-199a-3p. The RGD peptide enhanced new blood vessel growth and increased vascular endothelial growth factor levels when introduced into fertilized chicken eggs. The purpose of this study was to enable early detection of metastatic cancer cells using the novel RGD peptide as a biomarker, and thereby develop new drugs for the treatment of metastatic cancer. 相似文献
20.
BackgroundNeuropilin (NRP) receptors are overexpressed in glioma tumor tissue, and therefore may be a potential target for imaging markers. We investigated whether labelled tLyP-1, an NRP targeting peptide, could be used as the targeting ligand for developing reagents for imaging glioma tumors. MethodsThe tLyP-1 peptide (CGNKRTR) was labeled with 5-carboxyfluorescein (FAM) or 18F-fluoride. A control peptide (MAQKTSH) was also labeled with FAM. The in vitro binding between FAM-tLyP-1 and U87MG cells and in vivo biodistribution of FAM-tLyP-1 in a U87MG glioblastoma xenograft model (nude mouse) were determined. The in vivo biodistribution of 18F-tLyP-1 was also determined by microPET/CT. ResultsIn vitro, FAM-tLyP-1 was strongly taken up by U87MG cells at very low concentrations (1μM). In vivo, FAM-tLyP-1 accumulated in glioma (U87MG) tumors, but uptake was minimal in the normal brain tissue 1 h after administration. The distribution of FAM-tLyP-1 in the tumor tissue was consistent with expression of NRP1. The tumor/brain fluorescence intensity ratio in mice treated with FAM-tLyP-1 was significantly higher than the control FAM-labeled peptide 1 h after administration (3.44 ± 0.83 vs. 1.32 ± 0.15; t = 5.547, P = 0.001). Uptake of FAM-tLyP-1 in glioma tumors could be blocked by administering an excess of non-conjugated tLyP-1 peptide. [Lys4] tLyP-1 was labeled with 18F to synthesis a PET ( 18F-tLyP-1). MicroPET/CT imaging showed the tumor was visualized clearly with a high tumor/brain radiolabel ratio at 60 min (2.69 ± 0.52) and 120 min (3.11±0.25). ConclusionTaken together, our results suggest that tLyP-1 could be developed as a novel fluorescent or radio labelled tracer for imaging glioma. 相似文献
|