首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, three visually distinct forms of killer whales (Orcinus orca) were described from Antarctic waters and designated as types A, B and C. Based on consistent differences in prey selection and habitat preferences, morphological divergence and apparent lack of interbreeding among these broadly sympatric forms, it was suggested that they may represent separate species. To evaluate this hypothesis, we compared complete sequences of the mitochondrial control region from 81 Antarctic killer whale samples, including 9 type A, 18 type B, 47 type C and 7 type-undetermined individuals. We found three fixed differences that separated type A from B and C, and a single fixed difference that separated type C from A and B. These results are consistent with reproductive isolation among the different forms, although caution is needed in drawing further conclusions. Despite dramatic differences in morphology and ecology, the relatively low levels of sequence divergence in Antarctic killer whales indicate that these evolutionary changes occurred relatively rapidly and recently.  相似文献   

2.
Killer whales (Orcinus orca) are large predators that occupy the top trophic position in the world''s oceans and as such may have important roles in marine ecosystem dynamics. Although the possible top-down effects of killer whale predation on populations of their prey have received much recent attention, little is known of how the abundance of these predators may be limited by bottom-up processes. Here we show, using 25 years of demographic data from two populations of fish-eating killer whales in the northeastern Pacific Ocean, that population trends are driven largely by changes in survival, and that survival rates are strongly correlated with the availability of their principal prey species, Chinook salmon (Oncorhynchus tshawytscha). Our results suggest that, although these killer whales may consume a variety of fish species, they are highly specialized and dependent on this single salmonid species to an extent that it is a limiting factor in their population dynamics. Other ecologically specialized killer whale populations may be similarly constrained to a narrow range of prey species by culturally inherited foraging strategies, and thus are limited in their ability to adapt rapidly to changing prey availability.  相似文献   

3.
4.
Strong disruptive ecological selection can initiate speciation, even in the absence of physical isolation of diverging populations. Species evolving under disruptive ecological selection are expected to be ecologically distinct but, at least initially, genetically weakly differentiated. Strong selection and the associated fitness advantages of narrowly adapted individuals, coupled with assortative mating, are predicted to overcome the homogenizing effects of gene flow. Theoretical plausibility is, however, contrasted by limited evidence for the existence of rugged adaptive landscapes in nature. We found evidence for multiple, disruptive ecological selection regimes that have promoted divergence in the sympatric, incipient radiation of ‘sharpfin’ sailfin silverside fishes in ancient Lake Matano (Sulawesi, Indonesia). Various modes of ecological specialization have led to adaptive morphological differences between the species, and differently adapted morphs display significant but incomplete reproductive isolation. Individual fitness and variation in morphological key characters show that disruptive selection shapes a rugged adaptive landscape in this small but complex incipient lake fish radiation.  相似文献   

5.
Phylogeography has recently become more abundant in studies of demographic history of both wild and domestic species. A single nucleotide polymorphism (SNP) in the intron of the Y-chromosomal gene UTY19 displays a north-south gradient in modern cattle. Support for this geographical distribution of haplogroups has previously also been seen in ancient cattle from Germany. However, when analysing 38 historic remains of domestic bulls and three aurochs from northern Europe for this SNP we found no such association. Instead, we noted extensive amounts of temporal variation that can be attributed to transportation of cattle and late breed formation.  相似文献   

6.
Linking competitive outcomes to environmental conditions is necessary for understanding species'' distributions and responses to environmental change. Despite this importance, generalizable approaches for predicting competitive outcomes across abiotic gradients are lacking, driven largely by the highly complex and context-dependent nature of biotic interactions. Here, we present and empirically test a novel niche model that uses functional traits to model the niche space of organisms and predict competitive outcomes of co-occurring populations across multiple resource gradients. The model makes no assumptions about the underlying mode of competition and instead applies to those settings where relative competitive ability across environments correlates with a quantifiable performance metric. To test the model, a series of controlled microcosm experiments were conducted using genetically related strains of a widespread microbe. The model identified trait microevolution and performance differences among strains, with the predicted competitive ability of each organism mapped across a two-dimensional carbon and nitrogen resource space. Areas of coexistence and competitive dominance between strains were identified, and the predicted competitive outcomes were validated in approximately 95% of the pairings. By linking trait variation to competitive ability, our work demonstrates a generalizable approach for predicting and modelling competitive outcomes across changing environmental contexts.  相似文献   

7.
Ecological diversity has been reported for killer whales (Orcinus orca) throughout the North Atlantic but patterns of prey specialization have remained poorly understood. We quantify interindividual dietary variations in killer whales (n = 38) sampled throughout the year in 2017–2018 in northern Norway using stable isotopic nitrogen (δ15N: 15N/14N) and carbon (δ13C: 13C/12C) ratios. A Gaussian mixture model assigned sampled individuals to three differentiated clusters, characterized by disparate nonoverlapping isotopic niches, that were consistent with predatory field observations: seal‐eaters, herring‐eaters, and lumpfish‐eaters. Seal‐eaters showed higher δ15N values (mean ± SD: 12.6 ± 0.3‰, range = 12.3–13.2‰, n = 10) compared to herring‐eaters (mean ± SD: 11.7 ± 0.2‰, range = 11.4–11.9‰, n = 19) and lumpfish‐eaters (mean ± SD: 11.6 ± 0.2‰, range = 11.3–11.9, n = 9). Elevated δ15N values for seal‐eaters, regardless of sampling season, confirmed feeding at high trophic levels throughout the year. However, a wide isotopic niche and low measured δ15N values in the seal‐eaters, compared to that of whales that would eat solely seals (δN‐measured = 12.6 vs. δN‐expected = 15.5), indicated a diverse diet that includes both fish and mammal prey. A narrow niche for killer whales sampled at herring and lumpfish seasonal grounds supported seasonal prey specialization reflective of local peaks in prey abundance for the two fish‐eating groups. Our results, thus, show differences in prey specialization within this killer whale population in Norway and that the episodic observations of killer whales feeding on prey other than fish are a consistent behavior, as reflected in different isotopic niches between seal and fish‐eating individuals.  相似文献   

8.
Competition theory states that multiple species should not be able to occupy the same niche indefinitely. Morphologically, similar species are expected to be ecologically alike and exhibit little niche differentiation, which makes it difficult to explain the co‐occurrence of cryptic species. Here, we investigated interspecific niche differentiation within a complex of cryptic bumblebee species that co‐occur extensively in the United Kingdom. We compared the interspecific variation along different niche dimensions, to determine how they partition a niche to avoid competitive exclusion. We studied the species B. cryptarum, B. lucorum, and B. magnus at a single location in the northwest of Scotland throughout the flight season. Using mitochondrial DNA for species identification, we investigated differences in phenology, response to weather variables and forage use. We also estimated niche region and niche overlap between different castes of the three species. Our results show varying levels of niche partitioning between the bumblebee species along three niche dimensions. The species had contrasting phenologies: The phenology of B. magnus was delayed relative to the other two species, while B. cryptarum had a relatively extended phenology, with workers and males more common than B. lucorum early and late in the season. We found divergent thermal specialisation: In contrast to B. cryptarum and B. magnus, B. lucorum worker activity was skewed toward warmer, sunnier conditions, leading to interspecific temporal variation. Furthermore, the three species differentially exploited the available forage plants: In particular, unlike the other two species, B. magnus fed predominantly on species of heather. The results suggest that ecological divergence in different niche dimensions and spatio‐temporal heterogeneity in the environment may contribute to the persistence of cryptic species in sympatry. Furthermore, our study suggests that cryptic species provide distinct and unique ecosystem services, demonstrating that morphological similarity does not necessarily equate to ecological equivalence.  相似文献   

9.
We examine patterns of occurrence of associated dinosaur specimens (n = 343) from the North American Upper Cretaceous Hell Creek Formation and equivalent beds, by comparing their relative abundance in sandstone and mudstone. Ceratopsians preferentially occur in mudstone, whereas hadrosaurs and the small ornithopod Thescelosaurus show a strong association with sandstone. By contrast, the giant carnivore Tyrannosaurus rex shows no preferred association with either lithology. These lithologies are used as an indicator of environment of deposition, with sandstone generally representing river environments, and finer grained sediments typically representing floodplain environments. Given these patterns of occurrence, we argue that spatial niche partitioning helped reduce competition for resources between the herbivorous dinosaurs. Within coastal lowlands ceratopsians preferred habitats farther away from rivers, whereas hadrosaurs and Thescelosaurus preferred habitats in close proximity to rivers, and T. rex, the ecosystem's sole large carnivore, inhabited both palaeoenvironments. Spatial partitioning of the environment helps explain how several species of large herbivorous dinosaurs coexisted. This study emphasizes that different lithologies can preserve dramatically dissimilar vertebrate assemblages, even when deposited in close proximity and within a narrow window of time. The lithology in which fossils are preserved should be recorded as these data can provide unique insights into the palaeoecology of the animals they preserve.  相似文献   

10.
Killer whales are top predators in marine trophic chains, and therefore their feeding preferences can substantially affect the abundance of species on the lower trophic levels. Killer whales are known to feed on many different types of prey from small fish to large whales, but a given killer whale population usually focuses on a specific type of prey. Stable isotope analysis is widely used to study whale diets, because direct observations are often impossible. Killer whale feeding habits in the western North Pacific are poorly studied, and the large-scale stable isotope analysis provides a unique opportunity to gain insights into the trophic links of this top predator. In this study, we compare the δ13C and δ15N stable isotope values from killer whale skin samples obtained in different areas of the western North Pacific from fish-eating (R-type) and mammal-eating (T-type) killer whale ecotypes. The effect of ecotype was highly significant: both carbon and nitrogen stable isotope values were lower in R-type whales than in T-type whales. The geographical variation also affected killer whale stable isotope values due to both the differences in killer whale diet and the variation in baseline stable isotope values across the study areas.  相似文献   

11.
12.
Diverse associations between methanotrophic archaea (ANME) and sulfate-reducing bacterial groups (SRB) often co-occur in marine methane seeps; however, the ecophysiology of these different symbiotic associations has not been examined. Here, we applied a combination of molecular, geochemical and Fluorescence in situ hybridization (FISH) coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) analyses of in situ seep sediments and methane-amended sediment incubations from diverse locations (Eel River Basin, Hydrate Ridge and Costa Rican Margin seeps) to investigate the distribution and physiology of a newly identified subgroup of the Desulfobulbaceae (seepDBB) found in consortia with ANME-2c archaea, and compared these with the more commonly observed associations between the same ANME partner and the Desulfobacteraceae (DSS). FISH analyses revealed aggregates of seepDBB cells in association with ANME-2 from both environmental samples and laboratory incubations that are distinct in their structure relative to co-occurring ANME/DSS consortia. ANME/seepDBB aggregates were most abundant in shallow sediment depths below sulfide-oxidizing microbial mats. Depth profiles of ANME/seepDBB aggregate abundance revealed a positive correlation with elevated porewater nitrate relative to ANME/DSS aggregates in all seep sites examined. This relationship with nitrate was supported by sediment microcosm experiments, in which the abundance of ANME/seepDBB was greater in nitrate-amended incubations relative to the unamended control. FISH-NanoSIMS additionally revealed significantly higher 15N-nitrate incorporation levels in individual aggregates of ANME/seepDBB relative to ANME/DSS aggregates from the same incubation. These combined results suggest that nitrate is a geochemical effector of ANME/seepDBB aggregate distribution, and provides a unique niche for these consortia through their utilization of a greater range of nitrogen substrates than the ANME/DSS.  相似文献   

13.
Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea.  相似文献   

14.
Background and Aims Studies on oaks (Quercus spp.) have often been hampered by taxonomic confusion, a situation further compounded by the occurrence of extensive interspecific hybridization. In the present study, a combination of genetic and morphological analyses was used to examine sympatric populations of Q. petraea and Q. robur at the north-western edge of their ranges in Northern Ireland, since it had previously been suggested that hybridization could facilitate the apparent rapid, long-distance dispersal of oaks following the glaciations.Methods Samples were collected from 24 sites across Northern Ireland that had been previously designated as ancient or semi-natural woodland. Genotypes were obtained from a total of 950 trees using 12 nuclear microsatellite loci, and admixture coefficients were calculated based on a Bayesian clustering approach. Individuals were also classified as Q. petraea, Q. robur or hybrids based on two objective morphometric characters shown previously to delineate pure individuals effectively. Genetically ‘pure’ individuals of both species, as defined by the Bayesian clustering, were also genotyped for five chloroplast microsatellites.Key Results Genetic and morphological analyses both indicated the presence of pure individuals of both species, as well as a continuum of intermediates. There was a good agreement between the molecular and morphological classification, with a generally clear separation between pure individuals.Conclusions Despite millennia of hybridization and introgression, genetically and morphologically pure individuals of both Q. petraea and Q. robur can be found at the edge of their range, where both species occur sympatrically. The high proportion of individuals exhibiting introgression compared with previous studies may reflect the historical role of hybridization in facilitating dispersal following the glaciations. This is further supported by the significantly higher chloroplast diversity in Q. robur compared with Q. petraea.  相似文献   

15.
The niche construction model postulates that human bio-social evolution is composed of three inheritance domains, genetic, cultural and ecological, linked by feedback selection. This paper argues that many kinds of archaeological data can serve as proxies for human niche construction processes, and presents a method for investigating specific niche construction hypotheses. To illustrate this method, the repeated emergence of specialized reindeer (Rangifer tarandus) hunting/herding economies during the Late Palaeolithic (ca 14.7-11.5 kyr BP) in southern Scandinavia is analysed from a niche construction/triple-inheritance perspective. This economic relationship resulted in the eventual domestication of Rangifer. The hypothesis of whether domestication was achieved as early as the Late Palaeolithic, and whether this required the use of domesticated dogs (Canis familiaris) as hunting, herding or transport aids, is tested via a comparative analysis using material culture-based phylogenies and ecological datasets in relation to demographic/genetic proxies. Only weak evidence for sustained niche construction behaviours by prehistoric hunter-gatherer in southern Scandinavia is found, but this study nonetheless provides interesting insights into the likely processes of dog and reindeer domestication, and into processes of adaptation in Late Glacial foragers.  相似文献   

16.
Natural abundance is shaped by the abiotic requirements and biotic interactions that shape a species' niche, yet these influences are rarely decoupled. Moreover, most plant mortality occurs during early life stages, making seed recruitment critical in structuring plant populations. We find that natural abundance of two woodland herbs, Hexastylis arifolia and Hepatica nobilis, peaks at intermediate resource levels, a pattern probably formed by concurrent abiotic and biotic interactions. To determine how this abundance patterning reflects intrinsic physiological optima and extrinsic biotic interactions, we translocate adults and seeds to novel locations across experimentally extended abiotic gradients. These experiments indicate that the plant distributions probably reflect biotic interactions as much as physiological requirements, and that adult abundance provides a poor indication of the underlying niche requirements. The positive response exhibited by adult transplants in the wettest conditions is offset by increased fungal attack on buried seeds consistent with peak natural abundance where soil moisture is intermediate. This contraction of niche space is best described by Connell's model--species are limited by physiological tolerances where resources are low and biotic interactions where resources are high.  相似文献   

17.
同域分布3种啄木鸟冬季取食的生态位差异   总被引:1,自引:0,他引:1  
戎可  司雨蕙  潘麒嫣  王欢 《生态学报》2018,38(23):8314-8323
为了掌握黑啄木鸟、三趾啄木鸟和大斑啄木鸟的冬季取食行为特征,特别是三者之间取食生态位的差异,于2016年1月5-13日,在黑龙江省凉水国家级自然保护区以样线法结合样方法对3种啄木鸟的取食生境和取食行为进行了系统调查,收集了15个生境和行为特征变量数据。共布设45条样线,484个对照样方,收集312组啄木鸟取食数据,其中黑啄木鸟73组,三趾啄木鸟97组,大斑啄木鸟142组。多变量回归树和多分类逻辑斯谛分析结果显示,3种啄木鸟在所调查的15项特征上存在显著分异。采用基于利用-可利用方法的Bailey''s方法和双因子方差分析,分别对3种啄木鸟的生境选择和行为特征进行分析,结果显示:黑啄木鸟和三趾啄木鸟偏好在郁闭度较高的原始云、冷杉林中取食,而大斑啄木鸟则随机地在各种林型、生境中取食。黑啄木鸟、三趾啄木鸟多在树干取食,黑啄木鸟更常在倒木上取食,而大斑啄木鸟则多在树冠层取食。黑啄木鸟基本只在主干上凿洞,其他两种特别是大斑啄木鸟则可以在侧枝上取食。与黑啄木鸟和大斑啄木鸟凿洞取食昆虫不同,三趾啄木鸟多通过扒去树皮获得食物。黑啄木鸟的取食树基本为死树,单树取食时间最长,大斑啄木鸟多在活树上取食,单树取食时间最短,经常更换取食树,而三趾啄木鸟的取食树则死活参半,单树取食时间也较长。黑啄木鸟的冬季取食行为节律表现为双峰形,日出后和日落前各有一个活动高峰,其他两种则于白天持续取食。3种啄木鸟取食生境和行为生态位的差异,使它们能够更有效地利用有限的食物资源,共存于同一森林。  相似文献   

18.
In fish-eating North Pacific killer whales, large multi-pod aggregations of up to 100 animals often occur. These aggregations are thought to be reproductive gatherings where mating between members of different pods takes place. However, killer whales are social animals, and the role of these aggregations might also be establishing and maintaining social bonds between pods. Alternatively, it is also possible that multi-pod aggregations are in some way connected with foraging or searching for fish. In this study of killer whales in the western North Pacific, we describe multi-pod aggregations quantitatively and suggest their functional role in the life of fish-eating killer whales. We show that foraging is rare in multi-pod aggregations, whether inter-clan or intra-clan, and thus they are unlikely to play an important role in cooperative foraging. Socialising occurs more frequently in inter-clan rather than in intra-clan aggregations, which suggests the higher arousal level and possible mating during inter-clan aggregations. In summary, multi-pod aggregations of Kamchatka killer whales might be both reproductive assemblages and “clubs” of some kind in which whales gather to establish and maintain social bonds.  相似文献   

19.
While there are now a number of theoretical models predicting how consistent individual differences in behaviour may be generated and maintained, so far, there are few empirical tests. The social niche specialization hypothesis predicts that repeated social interactions among individuals may generate among-individual differences and reinforce within-individual consistency through positive feedback mechanisms. Here, we test this hypothesis using groups of the social spider Stegodyphus mimosarum that differ in their level of familiarity. In support of the social niche specialization hypothesis, individuals in groups of spiders that were more familiar with each other showed greater repeatable among-individual variation in behaviour. Additionally, individuals that were more familiar with each other exhibited lower within-individual variation in behaviour, providing one of the first examples of how the social environment can influence behavioural consistency. Our study demonstrates the potential for the social environment to generate and reinforce consistent individual differences in behaviour and provides a potentially general mechanism to explain this type of behavioural variation in animals with stable social groups.  相似文献   

20.
Theory suggests that sympatric speciation is possible; however, its prevalence in nature remains unknown. Because Neodiprion sawflies are host specialists and mate on their hosts, sympatric speciation via host shifts may be common in this genus. Here, we test this hypothesis using near-complete taxonomic sampling of a species group, comprehensive geographical and ecological data, and multiple comparative methods. Host-use data suggest that host shifts contributed to the evolution of reproductive isolation in Neodiprion and previous work has shown that gene flow accompanied divergence. However, geographical data provide surprisingly little support for the hypothesis that host shifts occurred in sympatry. While these data do not rule out sympatric host race formation in Neodiprion, they suggest that this speciation mode is uncommon in the genus and possibly in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号