首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Embryonic Six2-positive nephron progenitor cells adjacent to ureteric bud tips ultimately give rise to nephron structures, including proximal and distal tubules, podocytes, Bowman’s capsules, and the glomeruli. This process requires an internal balance between self-renew and differentiation of the nephron progenitor cells, which is mediated by numerous molecules. Recent studies have shown that the neurofibromin (Nf1) null mutant mouse embryos have an 18- to 24-h developmental delay in metanephros manifesting retardation in its cephalad repositioning and reduction number of glomeruli. However, the underlying inter-/intracellular signaling mechanisms responsible for reducing number of glomeruli during nephrogenesis remain to be fully elucidated. Here, we originally detected the Nf1 expression in developing kidney and metanephric mesenchyme cells. Surprisingly, Nf1 knockdown by small interfering RNAs in the metanephric mesenchyme cells (mK3) resulted in a decreased expression of Six2, the key marker of renal progenitor cells, while the ratio of apoptotic cells was significantly increased. Furthermore, overexpression of Six2 in mk3 cells partially rescued apoptosis phenotype. Collectively, these results implied that knockdown of Nf1 resulted in apoptosis of mK3 cells in vitro probably through down-regulation of Six2 expression. Collectively, we demonstrated that down-regulated Six2 by knockdown of Nf1 resulted in apoptosis of mK3 cells in vitro. These results implied that inhibition of Nf1 may delay metanephros development via down-regulation of Six2.  相似文献   

3.
4.
5.
Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.  相似文献   

6.
The mammalian metanephric kidney is derived from the intermediate mesoderm. In this report, we use molecular fate mapping to demonstrate that the majority of cell types within the metanephric kidney arise from an Osr1+ population of metanephric progenitor cells. These include the ureteric epithelium of the collecting duct network, the cap mesenchyme and its nephron epithelia derivatives, the interstitial mesenchyme, vasculature and smooth muscle. Temporal fate mapping shows a progressive restriction of Osr1+ cell fates such that at the onset of active nephrogenesis, Osr1 activity is restricted to the Six2+ cap mesenchyme nephron progenitors. However, low-level labeling of Osr1+ cells suggests that the specification of interstitial mesenchyme and cap mesenchyme progenitors occurs within the Osr1+ population prior to the onset of metanephric development. Furthermore, although Osr1+ progenitors give rise to much of the kidney, Osr1 function is only essential for the development of the nephron progenitor compartment. These studies provide new insights into the cellular origins of metanephric kidney structures and lend support to a model where Osr1 function is limited to establishing the nephron progenitor pool.  相似文献   

7.
During kidney morphogenesis, the formation of nephrons begins when mesenchymal nephron progenitor cells aggregate and transform into epithelial vesicles that elongate and assume an S-shape. Cells in different regions of the S-shaped body subsequently differentiate into the morphologically and functionally distinct segments of the mature nephron. Here, we have used an allelic series of mutations to determine the role of the secreted signaling molecule FGF8 in nephrogenesis. In the absence of FGF8 signaling, nephron formation is initiated, but the nascent nephrons do not express Wnt4 or Lim1, and nephrogenesis does not progress to the S-shaped body stage. Furthermore, the nephron progenitor cells that reside in the peripheral zone, the outermost region of the developing kidney, are progressively lost. When FGF8 signaling is severely reduced rather than eliminated, mesenchymal cells differentiate into S-shaped bodies. However, the cells within these structures that normally differentiate into the tubular segments of the mature nephron undergo apoptosis, resulting in the formation of kidneys with severely truncated nephrons consisting of renal corpuscles connected to collecting ducts by an abnormally short tubular segment. Thus, unlike other FGF family members, which regulate growth and branching morphogenesis of the collecting duct system, Fgf8 encodes a factor essential for gene regulation and cell survival at distinct steps in nephrogenesis.  相似文献   

8.
Cessation of renal morphogenesis in mice   总被引:2,自引:1,他引:1  
The kidney develops by cycles of ureteric bud branching and nephron formation. The cycles begin and are sustained by reciprocal inductive interactions and feedback between ureteric bud tips and the surrounding mesenchyme. Understanding how the cycles end is important because it controls nephron number. During the period when nephrogenesis ends in mice, we examined the morphology, gene expression, and function of the domains that control branching and nephrogenesis. We found that the nephrogenic mesenchyme, which is required for continued branching, was gone by the third postnatal day. This was associated with an accelerated rate of new nephron formation in the absence of apoptosis. At the same time, the tips of the ureteric bud branches lost the typical appearance of an ampulla and lost Wnt11 expression, consistent with the absence of the capping mesenchyme. Surprisingly, expression of Wnt9b, a gene necessary for mesenchyme induction, continued. We then tested the postnatal day three bud branch tip and showed that it maintained its ability both to promote survival of metanephric mesenchyme and to induce nephrogenesis in culture. These results suggest that the sequence of events leading to disruption of the cycle of branching morphogenesis and nephrogenesis began with the loss of mesenchyme that resulted from its conversion into nephrons.  相似文献   

9.
Preterm neonates are exposed at birth to high oxygen concentrations relative to the intrauterine environment. We have previously shown in a rat model that a hyperoxic insult results in a reduced nephron number in adulthood. Therefore, the aim of this study was to determine the effects of transient neonatal hyperoxia exposure on nephrogenesis. Sprague-Dawley rat pups were raised in 80% O2 or room air from P3 to P10. Pups (n = 12/group, 6 males and 6 females) were sacrificed at P5 (during active nephrogenesis) and at P10 (after the completion of nephrogenesis). Hyperoxia exposure resulted in a significant reduction in both nephrogenic zone width and glomerular diameter at P5, and a significantly increased apoptotic cell count; however, nephron number at P10 was not affected. HIF-1α expression in the developing kidney was significantly reduced following hyperoxia exposure. Systemic administration of the HIF-1α stabilizer dimethyloxalylglycine (DMOG) resulted in enhanced expression of HIF-1α and improved nephrogenesis: kidneys from hyperoxia-exposed pups treated with DMOG exhibited a nephrogenic zone width and glomerular diameter similar to room-air controls. These findings demonstrate that neonatal hyperoxia exposure results in impaired nephrogenesis, which may be at least in part HIF-1α-mediated. Although nephron number was not significantly reduced at the completion of nephrogenesis, early indicators of maldevelopment suggest the potential for accelerated nephron loss in adulthood. Overall, this study supports the premise that prematurely born neonates exposed to high oxygen levels after birth are vulnerable to impaired renal development.  相似文献   

10.
Fgfrl1 is a novel member of the fibroblast growth factor receptor family. Its extracellular domain resembles the four conventional Fgfrs, while its intracellular domain lacks the tyrosine kinase domain necessary for Fgf mediated signal transduction. During embryonic development Fgfrl1 is expressed in the musculoskeletal system, in the lung, the pancreas and the metanephric kidney. Targeted disruption of the Fgfrl1 gene leads to the perinatal death of the mice due to a hypoplastic diaphragm, which is unable to inflate the lungs. Here we show that Fgfrl1-/- embryos also fail to develop the metanephric kidney. While the rest of the urogenital system, including bladder, ureter and sexual organs, develops normally, a dramatic reduction of ureteric branching morphogenesis and a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme result in severe renal dysgenesis. The failure of nephron induction might be explained by the absence of the tubulogenic markers Wnt4, Fgf8, Pax8 and Lim1 at E12.5 of the mutant animals. We also observed a loss of Pax2 positive nephron precursor cells and an increase of apoptosis in the cortical zone of the remnant kidney. Fgfrl1 is therefore essential for mesenchymal differentiation in the early steps of nephrogenesis.  相似文献   

11.
12.
The fine-tuning of BMP signals is critical for many aspects of complex organogenesis. In this report, we show that the augmentation of BMP signaling by a BMP-binding secreted factor, Crossveinless2 (Cv2), is essential for the early embryonic development of mammalian nephrons. In the Cv2-null mouse, the number of cap condensates (clusters of nephron progenitors, which normally express Cv2) was decreased, and the condensate cells exhibited a reduced level of aggregation. In these Cv2-/- condensates, the level of phosphorylated Smad1 (pSmad1) was substantially lowered. The loss of a Bmp7 allele in the Cv2-/- mouse enhanced the cap condensate defects and further decreased the level of pSmad1 in this tissue. These observations indicated that Cv2 has a pro-BMP function in early nephrogenesis. Interestingly, the renal defects of the Cv2-/- mutant were totally suppressed by a null mutation of Twisted gastrulation (Tsg), which encodes another BMP-binding factor, showing that Cv2 exerts its pro-BMP nephrogenic function Tsg-dependently. By using an embryonic kidney cell line, we presented experimental evidence showing that Cv2 enhances pro-BMP activity of Tsg. These findings revealed the molecular hierarchy between extracellular modifiers that orchestrate local BMP signal peaks in the organogenetic microenvironment.  相似文献   

13.
14.
The balance between nephron progenitor cell (NPC) renewal, survival and differentiation ultimately determines nephron endowment and thus susceptibile to chronic kidney disease and hypertension. Embryos lacking the p53-E3 ubiquitin ligase, Murine double minute 2 (Mdm2), die secondary to p53-mediated apoptosis and growth arrest, demonstrating the absolute requirement of Mdm2 in embryogenesis. Although Mdm2 is required in the maintenance of hematopoietic stem cells, its role in renewal and differentiation of stem/progenitor cells during kidney organogenesis is not well defined. Here we examine the role of the Mdm2-p53 pathway in NPC renewal and fate in mice. The Six2-GFP::Cretg/+ mediated inactivation of Mdm2 in the NPC (NPCMdm2−/−) results in perinatal lethality. NPCMdm2−/− neonates have hypo-dysplastic kidneys, patchy depletion of the nephrogenic zone and pockets of superficially placed, ectopic, well-differentiated proximal tubules. NPCMdm2−/− metanephroi exhibit thinning of the progenitor GFP+/Six2+ population and a marked reduction or loss of progenitor markers Amphiphysin, Cited1, Sall1 and Pax2. This is accompanied by aberrant accumulation of phospho-γH2AX and p53, and elevated apoptosis together with reduced cell proliferation. E13.5–E15.5 NPCMdm2−/− kidneys show reduced expression of Eya1, Pax2 and Bmp7 while the few surviving nephron precursors maintain expression of Wnt4, Lhx1, Pax2, and Pax8. Lineage fate analysis and section immunofluorescence revealed that NPCMdm2−/− kidneys have severely reduced renal parenchyma embedded in an expanded stroma. Six2-GFP::Cretg/+; Mdm2f/f mice bred into a p53 null background ensures survival of the GFP-positive, self-renewing progenitor mesenchyme and therefore restores normal renal development and postnatal survival of mice. In conclusion, the Mdm2-p53 pathway is essential to the maintenance of the nephron progenitor niche.  相似文献   

15.
16.
Central nervous system injury induces a regenerative response in ensheathing glial cells comprising cell proliferation, spontaneous axonal remyelination, and limited functional recovery, but the molecular mechanisms are not fully understood. In Drosophila, this involves the genes prospero and Notch controlling the balance between glial proliferation and differentiation, and manipulating their levels in glia can switch the response to injury from prevention to promotion of repair. In the mouse, Notch1 maintains NG2 oligodendrocyte progenitor cells (OPCs) in a progenitor state, but what factor may enable oligodendrocyte (OL) differentiation and functional remyelination is not understood. Here, we asked whether the mammalian homologue of prospero, Prox1, is involved. Our data show that Prox1 is distributed in NG2+ OPCs and in OLs in primary cultured cells, and in the mouse spinal cord in vivo. siRNA prox1 knockdown in primary OPCs increased cell proliferation, increased NG2+ OPC cell number and decreased CC1+ OL number. Prox1 conditional knockout in the OL cell lineage in mice increased NG2+ OPC cell number, and decreased CC1+ OL number. Lysolecithin-induced demyelination injury caused a reduction in CC1+ OLs in homozygous Prox1-/- conditional knockout mice compared to controls. Remarkably, Prox1-/- conditional knockout mice had smaller lesions than controls. Altogether, these data show that Prox1 is required to inhibit OPC proliferation and for OL differentiation, and could be a relevant component of the regenerative glial response. Therapeutic uses of glia and stem cells to promote regeneration and repair after central nervous system injury would benefit from manipulating Prox1.  相似文献   

17.
18.

Objectives

Kidney disease is emerging as a critical medical problem worldwide. Because of limited treatment options for the damaged kidney, stem cell treatment is becoming an alternative therapeutic approach. Of many possible human stem cell sources, pluripotent stem cells are most attractive due to their self-renewal and pluripotent capacity. However, little is known about the derivation of renal lineage cells from human pluripotent stem cells (hPSCs). In this study, we developed a novel protocol for differentiation of nephron progenitor cells (NPCs) from hPSCs in a serum- and feeder-free system.

Materials and Methods

We designed step-wise protocols for differentiation of human pluripotent stem cells toward primitive streak, intermediate mesoderm and NPCs by recapitulating normal nephrogenesis. Expression of key marker genes was examined by RT-PCR, real time RT-PCR and immunocytochemistry. Each experiment was independently performed three times to confirm its reproducibility.

Results

After modification of culture period and concentration of exogenous factors, hPSCs can differentiate into NPCs that markedly express specific marker genes such as SIX2, GDNF, HOXD11, WT1 and CITED1 in addition to OSR1, PAX2, SALL1 and EYA1. Moreover, NPCs possess the potential of bidirectional differentiation into both renal tubular epithelial cells and glomerular podocytes in defined culture conditions. In particular, approximately 70% of SYN-positive cells were obtained from hPSC-derived NPCs after podocytes induction. NPCs can also form in vitro tubule-like structures in three dimensional culture systems.

Conclusions

Our novel protocol for hPSCs differentiation into NPCs can be useful for producing alternative sources of cell replacement therapy and disease modeling for human kidney diseases.  相似文献   

19.
20.
The development of opisthonephric nephrons in Rana esculenta generally follows the vertebrate scheme: mesenchymal cells from a blastemal cap that develops into an epitheloid, a comma-shaped, then an S-shaped body. The S-shaped body stage is followed by nephron stages I–IV. A standard pattern of nephrogenesis is maintained up to nephron stage I. In later stages (nephron stages II–IV) the arrangement of tubule loops and the position of the renal corpuscle depends on the space available in the kidney. As in mammals, anuran nephrogenesis is determined by coordinated differentiation processes: (1) induction, (2) cell polarization and proliferation, (3) morphogenetic processes, and, finally, 4) segmentation. It is further supported by growth processes of renal blood vessel analagen adjoining the nephron analoge. Ingrowth of glomerular capillary sprouts into the capsule analage is important for glomerulogenesis and differentiation of the adhesive zone. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号