首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genetic system comprised of mammalian cell mutants which demonstrate concomitant resistance to a number of unrelated drugs has been described previously. The resistance is due to reduced cell membrane permeability and is correlated with the presence of large amounts of a plasma membrane glycoprotein termed P-glycoprotein. This system could represent a model for multiple drug resistance which develops in cancer patients treated with chemotherapeutic drugs. We demonstrate here that the multiple drug resistance phenotype can be transferred to mouse cells with DNA from a drug-resistant mutant and then amplified quantitatively by culture in media containing increasing concentrations of drug. The amount of P-glycoprotein was correlated directly with the degree of drug resistance in the transformants and amplified transformants. In addition, the drug resistance and expression of P-glycoprotein of the transformants were unstable and associated quantitatively with the number of double minute chromosomes. We suggest that the gene for multiple drug resistance and P-glycoprotein is contained in these extrachromosomal particles and is amplified by increases in double minute chromosome number. The potential use of this system for manipulation of mammalian genes in general is discussed.  相似文献   

2.
We studied the loss and stabilization of dihydrofolate reductase genes in clones of a methotrexate-resistant murine S-180 cell line. These cells contained multiple copies of the dihydrofolate reductase gene which were associated with double minute chromosomes. The growth rate of these cells in the absence of methotrexate was inversely related to the degree of gene amplification (number of double minute chromosomes). Cells could both gain and lose genes as a result of an unequal distribution of double minute chromosomes into daughter cells at mitosis. The loss of amplified dihydrofolate reductase genes during growth in the absence of methotrexate resulted from the continual generation of cells containing lower numbers of double minute chromosomes. Because of the growth advantage of these cells, they became dominant in the population. We also studied an unstably resistant S-180 cell line (clone) that, after 3 years of continuous growth in methotrexate, generated cells containing stably amplified dihydrofolate reductase genes. These genes were present on one or more chromosomes, and they were retained in a stable state.  相似文献   

3.
Overcoming chemoresistance of pancreatic cancer (PCa) cells should significantly extend patient survival. The current treatment modalities rely on a variety of DNA damaging agents including gemcitabine, FOLFIRINOX, and Abraxane that activate cell cycle checkpoints, which allows cells to survive these drug treaments. Indeed, these treatment regimens have only extended patient survival by a few months. The complex microenvironment of PCa tumors has been shown to complicate drug delivery thus decreasing the sensitivity of PCa tumors to chemotherapy. In this study, a genome-wide siRNA library was used to conduct a synthetic lethal screen of Panc1 cells that was treated with gemcitabine. A sublethal dose (50 nM) of the drug was used to model situations of limiting drug availability to PCa tumors in vivo. Twenty-seven validated sensitizer genes were identified from the screen including the Vitamin D receptor (VDR). Gemcitabine sensitivity was shown to be VDR dependent in multiple PCa cell lines in clonogenic survival assays. Sensitization was not achieved through checkpoint override but rather through disrupting DNA repair. VDR knockdown disrupted the cells’ ability to form phospho-γH2AX and Rad51 foci in response to gemcitabine treatment. Disruption of Rad51 foci formation, which compromises homologous recombination, was consistent with increased sensitivity of PCa cells to the PARP inhibitor Rucaparib. Thus inhibition of VDR in PCa cells provides a new way to enhance the efficacy of genotoxic drugs.  相似文献   

4.
Extrachromosomal circular DNA molecules are prevalent in cancer cells and harbor amplified genes, such as oncogenes and drug resistance genes, that can provide a selective growth advantage to cancer cells. These circular DNA structures include double minute chromosomes (dmin), which can be detected with light microscopy following Giemsa staining, and submicroscopic circular DNA structures referred to as episomes. In this study, we investigated the fate of dmin and episomes in multidrug-resistant human epidermoid KB-V1 cells undergoing cisplatin-induced apoptosis – a mode of cell death initially characterized by the fragmentation of chromosomal DNA, while the nuclear membrane remains intact. The circular DNA structures carry amplified copies of the multidrug resistance gene (MDR1). During cisplatin-induced apoptotic cell death, episomes and dmin, as well as native chromosomes, were degraded into high molecular weight DNA fragments of approximately 50 kb in length. DNA fragments in this size range appear to result from the preferential cleavage of matrix-associated regions in chromatin with the subsequent release of 20–30 nm loop domains of chromatin from the nuclear scaffold. Scanning electron microscopy studies were performed and confirmed the presence of 30 nm filaments in a higher-order DNA packing of MDR1-containing dmin and episomes. These combined data provide strong evidence that the higher-order DNA packing of episomes, as well as dmin, is similar to that of native chromosomes and underscore the potential for extrachromosomal DNA amplicons to study the structural and functional organization of chromatin. We discuss the implications of extrachromosomal DNA matrix associated regions competing with native chromosomal DNA for binding to the nuclear matrix in tumor cells. Received: 18 August 1998; in revised form: 6 December 1998 / Accepted: 21 January 1999  相似文献   

5.
B P Kopnin  A V Gudkov 《Genetika》1982,18(10):1683-1692
Small chromatin bodies (SCB) were revealed in Djungarian hamster cells resistant to colchicine. They looked like single bodies or like clusters of small particles. SCB were localized both in nucleus and cytoplasm. Similar formations were earlier observed in oocytes of insects with amplified extrachromosomal rDNA genes. DNA in the SCB was able to replicate not only during the S phase but also during other phases of the cell cycle. The restriction analysis showed that in cells with SCB DNA amplified sequences were replicated autonomously too. These data indicate that SCB in colchicine-resistant cells contain amplified genes. Besides, SCB double-minute chromosomes (DMs) were observed in some resistant sublines. In one of them, DMs were the only karyotypic alteration. The relationship between SCB, chromosomal homogeneously staining regions (HSRs) and DMs was studied. Single SCB and DMs appeared at the early stage of the development of colchicine-resistance (the level of drug resistance is 16-22). Selection of variants 170-220-fold resistant to colchicine was usually accompanied by the decrease in the cell number with SCB and DMs and by the increase in the amount of cells containing the chromosomes with HSRs. During the further enhancement of drug resistance (700-750), some decrease in the number of cells with HSRs and the appearance of the great number of cells containing large groups of SCB were found. The loss of colchicine-resistance observed during cultivation in colchicine free medium was accompanied by the disappearance of HSRs, emergence of SCB and DMs and further elimination of SCB and DMs from cells. The quantity of autonomously replicating amplified DNA fragments after digestive by HindIII was increased with the enhancement of SCB number in cultures.  相似文献   

6.
Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G₂-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4–8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells with both sub-4N and 4N DNA content prematurely enter mitosis. Coincident with premature transition into mitosis, levels of DNA damage dramatically increase and chromosomes condense and attempt to align along the metaphase plate. Despite an attempt to congress at the metaphase plate, chromosomes rapidly fragment and lose connection to the spindle microtubules. Gemcitabine mediated DNA damage promotes the formation of Rad51 foci; however, while Chk1 inhibition does not disrupt Rad51 foci that are formed in response to gemcitabine, these foci are lost as cells progress into mitosis. Premature entry into mitosis requires the Aurora, Cdk1/2 and Plk1 kinases and even though caspase-2 and -3 are activated upon mitotic exit, they are not required for cell death. Interestingly, p53, but not p21, deficiency enables checkpoint bypass and chemo-potentiation. Finally, we uncover a differential role for the Wee-1 checkpoint kinase in response to DNA damage, as Wee-1, but not Chk1, plays a more prominent role in the maintenance of S- and G₂-checkpoints in p53 proficient cells.  相似文献   

7.
Murine 3T6 selected in increasing concentrations of methotrexate were unstable with respect to dihydrofolate reductase overproduction and methotrexate resistance when they are cultured in the absence of methotrexate. An analysis of the karyotypes of these resistant cells revealed the presence of numerous double minute chromosomes. We observed essentially identical kinetics of loss of dihydrofolate reductase gene sequences in total deoxyribonucleic acid and in deoxyribonucleic acid from fractions enriched in double minute chromosomes and in the numbers of double minute chromosomes per cell during reversion to methotrexate sensitivity, and this suggested that unstably amplified gene sequences were localized on double minute chromosomes. This conclusion ws also supported by an analysis of cell populations sorted according to dihydrofolate reductase enzyme contents, in which relative gene amplification and double minute chromosome content were related proportionally.  相似文献   

8.
T L Chen  L Manuelidis 《Genomics》1989,4(3):430-433
In a human neuroblastoma line, minute chromosomes were separable from the bulk of interphase nuclear DNA by contour-clamped homogeneous electric field (CHEF) gel electrophoresis. The minute chromosomes showed a homogeneous size of approximately 3 Mbp and contained amplified N-myc genes. Fractionation was accomplished without prior strand-cleaving treatment of the DNA, indicating that at least a portion of the minute chromosomes exist as free entities in the interphase nuclei. Human alphoid satellite DNA sequences were also detected in the 3-Mbp band. It is possible that alphoid sequences are contained in the constricted central region that joins these double minutes.  相似文献   

9.
The purpose of this study is to determine the kinetics of the replication of intrachromosomal versus extrachromosomal amplified dihydrofolate reductase (DHFR) genes. Previous studies reported that the DHFR gene, when carried intrachromosomally on a homogeneously staining region, replicates (as a unit) within the first 2 h of the S phase of the cell cycle. We wished to determine if the extrachromosomal location of the amplified genes carried on double minute chromosomes effects the timing of their replication. Equilibrium cesium chloride ultracentrifugation was used to separate newly replicated (BUdR-labeled) DNA from bulk DNA in a synchronized cell population. Hybridization with the cDNA for the DHFR gene allowed us to determine the period of time within the cell cycle in which the DHFR DNA sequences were replicated. We found that, in contrast to intrachromosomal dihydrofolate reductase genes that uniformly replicate as a unit at the beginning of the S phase of the cell cycle, dihydrofolate reductase genes carried on double minute chromosomes (DMs) replicate throughout the S phase of the cell cycle. These results suggest that control of replication of extrachromosomal DNA sequences may differ from intrachromosomal sequences.  相似文献   

10.
Total amplified DNA in methotrexate-resistant mouse lymphoma EL4 cells and mouse melanoma PG19 cells has been characterized in two ways. Metaphase spreads show the presence of additional chromosome forms that are either “homogeneously staining” chromosomes or “double minute” and ring chromosomes. Gel electrophoresis of restriction enzyme-digested nuclear DNA shows the presence of amplified sequences, the pattern of which is unique in each of five cell lines. We conclude that extensive DNA rearrangement has taken place during amplification.  相似文献   

11.
Kopnin  B. P.  Massino  J. S.  Gudkov  A. V. 《Chromosoma》1985,92(1):25-36
Chromosomal analysis of 26 Djungarian hamster cell lines obtained from 11 independent clones and possessing different levels of resistance to colchicine or adriablastin as a consequence of gene amplification revealed regular patterns in the karyotypic changes that accompanied the development of drug resistance. Usually the sequence of karyotypic changes was as follows: first an additional chromosome 4 appeared; then single unpaired small chromatin bodies (SCBs) arose; later in the middle part of the long arm of one of three chromosomes 4 long homogeneously staining regions (HSRs) and double minute chromosomes (DMs) were formed; and finally in the most resistant variants large clusters of SCBs appeared. The emergence of the clusters of the SCBs correlated well with the occurrence of autonomously replicating, amplified DNA sequences. In contrast to DNA of the HSRs the DNA of the SCBs could replicate outside the S-phase of the cell cycle. When kept in a non-selective medium, the cells gradually lost their resistance to colchicine: 1%–4% of the cells lost the capacity to form colonies in the selective medium independently of the pattern of location in them of amplified genes (in chromosomal HSRs, SCBs, or DMs). Loss of drug resistance was accompanied by disappearance of the chromosomal HSRs, SCBs, and DMs. Chromosomal analysis of the set of methotrexate-resistant Djungarian hamster cell lines indicated the following karyotypic evolution: first the additional material on the distal part of one of two chromosomes 3 appeared; then the light HSRs were formed on the distal part of one of two chromosomes 4; later clusters of SCBs and HSRs arose on the distal part of the short arm of chromosome 3. Probably the amplification of different genes is characterized by specific patterns of karyotypic alterations.  相似文献   

12.
Several variants resistant to 1.8 x 10(-4) M DL-methotrexate (MTX) have been isolated from the human cell lines HeLa BU25 and VA2-B by exposing them to progressively increasing concentrations of the drug. A striking variability of phenotype and chromosome constitution was observed among the different variants. All resistant cell lines exhibited a greatly increased dihydrofolic acid reductase (DHFR) activity and DHFR content; however, the DHFR activity levels varied considerably among the variants, ranging between about 35 and 275 times the parental level. In the absence of selective pressure, the increased DHFR activity was unstable, and in all cell lines but one was completely lost over a period ranging in different variants between 25 and 200 days. The MTX-resistant cells lines showed anomalies in their chromosome constitution, which involved the occurrence of a duplicated set of chromosomes in most cells of some of the variants and the presence of double minute chromosomes in all cell lines. An analysis of the correlation of loss of double minute chromosomes and loss of DHFR activity in the absence of MTX has given results consistent with the idea that the double-minute chromosomes contain amplified DHFR genes. However, the most significant finding is that, in contrast to what has been reported in the mouse system, the recognizable double-minute chromosomes varied greatly in number in different variants without any relationship to either the level of DHFR activity or the degree of instability of MTX resistance in the absence of selective pressure. These and other observations point to the occurrence in the human MTX-resistant variants of another set of DHFR genes, representing a varied proportion of the total, which is associated with the regular chromosomes, and which may be unstable in the absence of selective pressure.  相似文献   

13.
This study characterizes amplified structures carrying the human multidrug resistance (MDR) genes in colchicine-selected multidrug resistant KB cell lines and strongly supports a model of gene amplification in which small circular extrachromosomal DNA elements generated from contiguous chromosomal DNA regions multimerize to form cytologically detectable double minute chromosomes (DMs). The human MDR1 gene encodes the 170-kDa P-glycoprotein, which is a plasma membrane pump for many structurally unrelated chemotherapeutic drugs. MDR1 and its homolog, MDR2, undergo amplification when KB cells are subjected to stepwise selection in increasing concentrations of colchicine. The structure of the amplification unit at each step of drug selection was characterized using both high-voltage gel electrophoresis and pulsed-field gel electrophoresis (PFGE) techniques. An 890-kb submicroscopic extrachromosomal circular DNA element carrying the MDR1 and MDR2 genes was detected in cell line KB-ChR-8-5-11, the earliest step in drug selection in which conventional Southern/hybridization analyses detected MDR gene amplification. When KB-ChR-8-5-11 was subjected to stepwise increases in colchicine, this circular DNA element dimerized as detected by PFGE with and without digestion with Not 1, which linearizes the 890-kb amplicon. This dimerization process, which also occurred at the next step of colchicine selection, resulted in the formation of cytologically detectable DMs revealed by analysis of Giemsa-stained metaphase spreads.  相似文献   

14.
Treating mammalian cells with continuous sub-lethal doses of Hydroxyurea (HU) causes the loss of double minute chromosomes (DMs) containing amplified oncogenes in culture. Recently, we have shown that treating glioblastoma multiforme cells in culture with low doses of HU causes the loss of DMs containing epidermal growth factor receptor genes. Loss of amplified EGFR genes was accompanied by cessation of growth, and greatly decreased tumorigenicity. To further study HU-induced elimination of DMs we have now followed the fate of dihydrofolate reductase gene (DHFR) amplifying DMs in methotrexate-resistant mouse cells during simultaneous treatment with both MTX and HU. We report that in the presence of both HU and MTX, the amplified genes decreased to 25% of starting levels in the first week of treatment, but that ultimately the cells become resistant to HU and reamplify the DHFR gene. We also report that some DHFR amplifying DMs are much more sensitive to HU than others. This study demonstrates that HU does not simply increase the rate of passive loss of DMs.  相似文献   

15.
Treating mammalian cells with continuous sub-lethal doses of Hydroxyurea (HU) causes the loss of double minute chromosomes (DMs) containing amplified oncogenes in culture. Recently, we have shown that treating glioblastoma multiforme cells in culture with low doses of HU causes the loss of DMs containing epidermal growth factor receptor genes. Loss of amplified EGFR genes was accompanied by cessation of growth, and greatly decreased tumorigenicity. To further study HU-induced elimination of DMs we have now followed the fate of dihydrofolate reductase gene (DHFR) amplifying DMs in methotrexate-resistant mouse cells during simultaneous treatment with both MTX and HU. We report that in the presence of both HU and MTX, the amplified genes decreased to 25% of starting levels in the first week of treatment, but that ultimately the cells become resistant to HU and reamplify the DHFR gene. We also report that some DHFR amplifying DMs are much more sensitive to HU than others. This study demonstrates that HU does not simply increase the rate of passive loss of DMs.  相似文献   

16.
Amsacrine is an acridine derivative drug applied in haematological malignancies. It targets topoisomerase II enhancing the formation of a cleavable DNA-enzyme complex and leading to DNA fragmentation in dividing cancer cells. Little is known about other modes of the interaction of amsacrine with DNA, by which it could affect also normal cells. Using the alkaline comet assay, we showed that amsacrine at concentrations from the range 0.01 to 10 microM induced DNA damage in normal human lymphocytes, human promyelocytic leukemia HL-60 cells lacking the p53 gene and murine pro-B lymphoid cells BaF3 expressing BCR/ABL oncogene measured as the increase in percentage tail DNA. The effect was dose-dependent. Treated cells were able to recover within a 120-min incubation. Amifostine at 14 mM decreased the level of DNA damage in normal lymphocytes, had no effect on the HL-60 cells and potentiated the DNA-damaging effect of the drug in BCR/ABL-transformed cells. Vitamin C at 10 and 50 microM diminished the extent of DNA damage in normal lymphocytes, but had no effect in cancer cells. Pre-treatment of the cells with the nitrone spin trap, N-tert-butyl-alpha-phenylnitrone or ebselen, which mimics glutathione peroxidase, reduced the extent of DNA damage evoked by amsacrine in all types of cells. The cells exposed to amsacrine and treated with endonuclease III and 3-methyladenine-DNA glycosylase II, the enzymes recognizing oxidized and alkylated bases, respectively, displayed greater extent of DNA damage than those not treated with these enzymes. The results obtained suggest that free radicals may be involved in the formation of DNA lesions induced by amsacrine. The drug can also methylate DNA bases. Our results indicate that the induction of secondary malignancies should be taken into account as diverse side effects of amsacrine. Amifostine may potentate DNA-damage effect of amsacrine in cancer cells and decrease this effect in normal cells and Vitamin C can be considered as a protective agent against DNA damage in normal cells.  相似文献   

17.
M. Kimmel  D. E. Axelrod 《Genetics》1990,125(3):633-644
An increased number of copies of specific genes may offer an advantage to cells when they grow in restrictive conditions such as in the presence of toxic drugs, or in a tumor. Three mathematical models of gene amplification and deamplification are proposed to describe the kinetics of unstable phenotypes of cells with amplified genes. The models differ in details but all assume probabilistic mechanisms of increase and decrease in gene copy number per cell (gene amplification/deamplification). Analysis of the models indicates that a stable distribution of numbers of copies of genes per cell, observed experimentally, exists only if the probability of deamplification exceeds the probability of amplification. The models are fitted to published data on the loss of methotrexate resistance in cultured cell lines, due to the loss of amplified dihydrofolate reductase gene. For two mouse cell lines unstably resistant to methotrexate the probabilities of amplification and deamplification of the dihydrofolate reductase gene on double minute chromosomes are estimated to be approximately 2% and 10%, respectively. These probabilities are much higher than widely presumed. The models explain the gradual disappearance of the resistant phenotype when selective pressure is withdrawn, by postulating that the rate of deamplification exceeds the rate of amplification. Thus it is not necessary to invoke a growth advantage of nonresistant cells which has been the standard explanation. For another analogous process, the loss of double minute chromosomes containing the myc oncogene from SEWA tumor cells, the growth advantage model does seem to be superior to the amplification and deamplification model. In a more theoretical section of the paper, it is demonstrated that gene amplification/deamplification can result in reduction to homozygosity, such as is observed in some tumors. Other applications are discussed.  相似文献   

18.
Pancreatic carcinoma is the major clinical entity where the nucleoside analog gemcitabine is used for first-line therapy. Overcoming cellular resistance toward gemcitabine remains a major challenge in this context. This raises the need to identify factors that determine gemcitabine sensitivity in pancreatic carcinoma cells. We previously found the MAPK-activated protein kinase 2 (MK2), part of the p38/MK2 stress response pathway, to be required for DNA replication fork stalling when osteosarcoma-derived cells were treated with gemcitabine. As a consequence, inhibition or depletion of MK2 protects these cells from gemcitabine-induced death (Köpper, et al. Proc Natl Acad Sci USA 2013; 110:16856–61). Here, we addressed whether MK2 also determines the sensitivity of pancreatic cancer cells toward gemcitabine. We found that MK2 inhibition reduced the intensity of the DNA damage response and enhanced survival of the pancreatic cancer cell lines BxPC-3, MIA PaCa-2, and Panc-1, which display a moderate to strong sensitivity to gemcitabine. In contrast, MK2 inhibition only weakly attenuated the DNA damage response intensity and did not enhance long-term survival in the gemcitabine-resistant cell line PaTu 8902. Importantly, in BxPC-3 and MIA PaCa-2 cells, inhibition of MK2 also rescued increased H2AX phosphorylation caused by inhibition of the checkpoint kinase Chk1 in the presence of gemcitabine. These results indicate that MK2 mediates gemcitabine efficacy in pancreatic cancer cells that respond to the drug, suggesting that the p38/MK2 pathway represents a determinant of the efficacy by that gemcitabine counteracts pancreatic cancer.  相似文献   

19.
20.
Molecular cloning of genomic sequences altered in cancer cells is believed to lead to the identification of new genes involved in the initiation and progression of the malignant phenotype. DNA amplification is a frequent molecular alteration in tumor cells, and is a mode of proto-oncogene activation. The cytologic manifestation of this phenomenon is the appearance of chromosomal homogeneously staining regions (HSRs) or double minute bodies (DMs). The gastric carcinoma cell line KATO III is characterized by a large HSR on chromosome 11. In-gel renaturation analysis confirmed the amplification of DNA sequences in this cell line, yet none of 42 proto-oncogenes that we tested is amplified in KATO III DNA. We employed the phenol-enhanced reassociation technique (PERT) to isolate 21 random DNA fragments from the amplified domain, and used 6 of them to further clone some 150 kb from that genomic region. While in situ hybridization performed with some of these sequences indicated that in KATO III they are indeed amplified within the HSR on chromosome 11, somatic cell hybrid analysis and in situ hybridization to normal lymphocyte chromosomes showed that they are derived from chromosome 10, band q26. The same sequences were found to be amplified in another gastric carcinoma cell line, SNU-16, which contains DMs, but were not amplified in other 70 cell lines representing a wide variety of human neoplasms. One of these sequences was highly expressed in both KATO III and SNU-16. Thus, the cloned sequences supply a starting point for identification of novel genes which might be involved in the pathogenesis of gastric cancers, and are located in a relatively unexplored domain of the human genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号