首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
SERPINA1/AAT/α-1-antitrypsin (serpin family A member 1) deficiency (SERPINA1/ AAT-D) is an autosomal recessive disorder characterized by the retention of misfolded SERPINA1/AAT in the endoplasmic reticulum (ER) of hepatocytes and a significant reduction of serum SERPINA1/AAT level. The Z variant of SERPINA1/AAT, containing a Glu342Lys (E342K) mutation (SERPINA1E342K/ATZ), the most common form of SERPINA1/AAT-D, is prone to misfolding and polymerization, which retains it in the ER of hepatocytes and leads to liver injury. Both proteasome and macroautophagy/autophagy pathways are responsible for disposal of SERPINA1E342K/ATZ after it accumulates in the ER. However, the mechanisms by which SERPINA1E342K/ATZ is selectively degraded by autophagy remain unknown. Here, we showed that ER membrane-spanning ubiquitin ligase (E3) SYVN1/HRD1 enhances the degradation of SERPINA1E342K/ATZ through the autophagy-lysosome pathway. We found that SYVN1 promoted SERPINA1E342K/ATZ, especially Triton X 100-insoluble SERPINA1E342K/ATZ clearance. However, the effect of SYVN1 in SERPINA1E342K/ATZ clearance was impaired after autophagy inhibition, as well as in autophagy-related 5 (atg5) knockout cells. On the contrary, autophagy induction enhanced SYVN1-mediated SERPINA1E342K/ATZ degradation. Further study showed that SYVN1 mediated SERPINA1E342K/ATZ ubiquitination, which is required for autophagic degradation of SERPINA1E342K/ATZ by promoting the interaction between SERPINA1E342K/ATZ and SQSTM1/p62 for formation of the autophagy complex. Interestingly, SYVN1-mediated lysine 48 (K48)-linked polyubiquitin chains that conjugated onto SERPINA1E342K/ATZ might predominantly bind to the ubiquitin-associated (UBA) domain of SQSTM1 and couple the ubiquitinated SERPINA1E342K/ATZ to the lysosome for degradation. In addition, autophagy inhibition attenuated the suppressive effect of SYVN1 on SERPINA1E342K/ATZ cytotoxicity, and the autophagy inducer rapamycin enhanced the suppressive effect of SYVN1 on SERPINA1E342K/ATZ-induced cell apoptosis. Therefore, this study proved that SYVN1 enhances SERPINA1E342K/ATZ degradation through SQSTM1-dependent autophagy and attenuates SERPINA1E342K/ATZ cytotoxicity.  相似文献   

4.
In vitro chaperone-like activity of the serpin family member and plasma acute-phase component human α1-antitrypsin (AAT) has been shown for the first time. Results of light-scattering experiments demonstrated that AAT efficiently inhibits both heat- and chemical-induced aggregation of various test proteins including alcohol dehydrogenase, aldolase, carbonic anhydrase, catalase, citrate synthase, enolase, glutathione S-transferase, l-lactate dehydrogenase, and βL-crystallin. The results suggest that the unique metastable serpin architecture enables dual function, protease inhibiton as well as chaperone activity and highlight the serpin superfamily as a possible source of additional intra- and extracellular chaperones (e.g. α1-antichymotrypsin). The present finding is surprising in the light of the well-known role of mutated forms of AAT and other serpins in the pathogenesis of diseases called serpinopathies that featured with aberrant conformational transitions and consequent self-aggregation of serpin proteins.  相似文献   

5.
6.
7.
Alpha-1-antitrypsin (AAT) or serine protease inhibitor A1 (SERPINA1) is an important serine protease inhibitor in humans. The main physiological role of AAT is to inhibit neutrophil elastase (NE) released from triggered neutrophils, with an additional lesser role in the defense against damage inflicted by other serine proteases, such as cathepsin G and proteinase 3. Although there is a reported association between AAT polymorphism and different types of cancer, this association with hematological malignancies (HM) is, as yet, unknown. We identified AAT phenotypes by isoelectric focusing (in the pH 4.2-4.9 range) in 151 serum samples from patients with HM (Hodgkins lymphomas, non-Hodgkins lymphomas and malignant monoclonal gammopathies). Healthy blood-donors constituted the control group (n = 272). The evaluated population of patients as well as the control group, were at Hardy-Weinberg equilibrium for the AAT gene (χ(2) = 4.42, d.f.11, p = 0.96 and χ(2) = 4.71, d.f.11, p = 0.97, respectively). There was no difference in the frequency of deficient AAT alleles (Pi Z and Pi S) between patients and control. However, we found a significantly higher frequency of PiM1M1 homozygote and PiM1 allele in HM patients than in control (for phenotype: f = 0.5166 and 0.4118 respectively, p = 0.037; for allele: f = 0.7020 and 0.6360 respectively, p = 0.05). In addition, PiM homozygotes in HM-patients were more numerous than in controls (59% and 48%, respectively, p = 0.044). PiM1 alleles and PiM1 homozygotes are both associated with hematological malignancies, although this is considered a functionally normal AAT variant.  相似文献   

8.
A novel porcine gene, alpha-1-antichymotrypsin 2 (SERPINA3-2), a member of the serpin superfamily, was isolated from a porcine genomic library and sequenced. The genomic organization of the approximately 9.0 kb gene was determined on the basis of the porcine liver cDNA of SERPINA3-1 and SERPINA3-2, and comprises five exons and four introns. The coding sequence of SERPINA3-2 shares 86% identity with the paralogue, SERPINA3-1. Porcine SERPINA3-2 was found to be an orthologue of human SERPINA3 (71% identity of the coding sequences) and both genes have a similar genomic organization. Polymorphisms were found in intron 4 of the porcine gene using polymerase chain reaction-restriction fragment length polymorphism. The gene was mapped by linkage analysis and radiation hybrid mapping to the distal end of chromosome 7q, to the gene cluster of the protease inhibitors including PI1 (SERPINA1), PI2, PI3, PI4 (apparently paralogues of SERPINA3), and PO1A and PO1B. SERPINA3-2 is the first porcine serpin gene whose genomic organization has been determined.  相似文献   

9.
Serine protease inhibitors (SERPINs) are a superfamily of highly conserved proteins that play a key role in controlling the activity of proteases in diverse biological processes. The SERPIN cluster located at the 14q32.1 region includes the gene coding for SERPINA1, and a highly homologous sequence, SERPINA2, which was originally thought to be a pseudogene. We have previously shown that SERPINA2 is expressed in different tissues, namely leukocytes and testes, suggesting that it is a functional SERPIN. To investigate the function of SERPINA2, we used HeLa cells stably transduced with the different variants of SERPINA2 and SERPINA1 (M1, S and Z) and leukocytes as the in vivo model. We identified SERPINA2 as a 52 kDa intracellular glycoprotein, which is localized at the endoplasmic reticulum (ER), independently of the variant analyzed. SERPINA2 is not significantly regulated by proteasome, proposing that ER localization is not due to misfolding. Specific features of SERPINA2 include the absence of insoluble aggregates and the insignificant response to cell stress, suggesting that it is a non-polymerogenic protein with divergent activity of SERPINA1. Using phylogenetic analysis, we propose an origin of SERPINA2 in the crown of primates, and we unveiled the overall conservation of SERPINA2 and A1. Nonetheless, few SERPINA2 residues seem to have evolved faster, contributing to the emergence of a new advantageous function, possibly as a chymotrypsin-like SERPIN. Herein, we present evidences that SERPINA2 is an active gene, coding for an ER-resident protein, which may act as substrate or adjuvant of ER-chaperones.  相似文献   

10.
Serpins are protease inhibitors that play essential roles in the down-regulation of extracellular proteolytic cascades. The core serpin domain is highly conserved, and typical serpins are encoded with a molecular size of 35–50 kDa. Here, we describe a novel 93-kDa protein that contains two complete, tandemly arrayed serpin domains. This twin serpin, SPN93, was isolated from the larval hemolymph of the large beetle Tenebrio molitor. The N-terminal serpin domain of SPN93 forms a covalent complex with the Spätzle-processing enzyme, a terminal serine protease of the Toll signaling cascade, whereas the C-terminal serpin domain of SPN93 forms complexes with a modular serine protease and the Spätzle-processing enzyme-activating enzyme, which are two different enzymes of the cascade. Consequently, SPN93 inhibited β-1,3-glucan-mediated Toll proteolytic cascade activation in an in vitro system. Site-specific proteolysis of SPN93 at the N-terminal serpin domain was observed after activation of the Toll proteolytic cascade in vivo, and down-regulation of SPN93 by RNAi sensitized β-1,3-glucan-mediated larval death. Therefore, SPN93 is the first serpin that contains twin tandemly arrayed and functionally active serpin domains that have a regulatory role in the larval Toll proteolytic signaling cascade.  相似文献   

11.
12.
The ovine POU1F1 gene is localized on chromosome 1 and it contains five introns and six exons. In different mammalian species some mutations in different exons are associated with different production traits. The aim of our research was to study the POU1F1 gene nucleotide sequence to detect possible polymorphisms and their relationships with milk productive traits in Sarda breed sheep. The study had been conducted on 140 ewes, 4 or 5 years old coming from a farm located in Sardinia. All the animals were multiparous, lactating and in their third to fifth lactation. Individual milk yield had been recorded monthly and for each sample fat, protein, casein, lactose, and somatic cell count values were analysed. A jugular blood sample was collected from each ewe to perform genomic DNA extraction. PCR, SSCP and sequencing analysis were carried out to examine the six exons to highlight possible SNPs. One-way ANOVA was used to analyse association of variants with milk yield and/or its composition. Two novel SNP were found: 121 C>T in the 5′UTR of the fourth intron fragment and 249 G>A in the 3′UTR of the sixth exon fragment. The statistical analysis did not shown association between milk productive traits and the found polymorphisms. However, further investigations about the promoter region or the prophet genes, like the PROP-1, could clarify its exact role in regulating the productive traits in sheep.  相似文献   

13.
By alternative use of four RSL (reactive site loop) coding exon cassettes, the serpin (serine protease inhibitor) gene Spn4 from Drosophila melanogaster was proposed to enable the synthesis of multiple protease inhibitor isoforms, one of which has been shown to be a potent inhibitor of human furin. Here, we have investigated the inhibitory spectrum of all Spn4 RSL variants. The analyses indicate that the Spn4 gene encodes inhibitors that may inhibit serine proteases of the subtilase family (S8), the chymotrypsin family (S1), and the papain-like cysteine protease family (C1), most of them at high rates. Thus a cohort of different protease inhibitors is generated simply by grafting enzyme-adapted RSL sequences on to a single serpin scaffold, even though the target proteases contain different types and/or a varying order of catalytic residues and are descendents of different phylogenetic lineages. Since all of the Spn4 RSL isoforms are produced as intracellular residents and additionally as variants destined for export or associated with the secretory pathway, the Spn4 gene represents a versatile defence tool kit that may provide multiple antiproteolytic functions.  相似文献   

14.
15.
16.
The human serine protease inhibitor (serpin) gene cluster at 14q32.1 is a useful model system to study cell-type-specific gene expression and chromatin structure. Activation of the serpin locus can be induced in vitro by transferring human chromosome 14 from non-expressing to expressing cells. Serpin gene activation in expressing cells is correlated with locus-wide alterations in chromatin structure, including the de novo formation of 17 expression-associated DNase I-hypersensitive sites (DHSs). In this study, we investigated histone acetylation throughout the proximal serpin subcluster. We report that gene activation is correlated with high levels of histone H3 and H4 acetylation at serpin gene promoters and other regulatory regions. However, the locus is not uniformly hyperacetylated, as there are regions of hypoacetylation between genes. Furthermore, genetic tests indicate that locus-wide controls regulate both gene expression and chromatin structure. For example, deletion of a previously identified serpin locus control region (LCR) upstream of the proximal subcluster reduces both gene expression and histone acetylation throughout the ~130 kb region. A similar down regulation phenotype is displayed by transactivator-deficient cell variants, but this phenotype can be rescued by transfecting the cells with expression cassettes encoding hepatocyte nuclear factor-1α (HNF-1α) or HNF-4. Taken together, these results suggest that histone acetylation depends on interactions between the HNF-1α/HNF-4 signaling cascade and the serpin LCR.  相似文献   

17.
Several infrequent genetic polymorphisms in the SERPINA1 gene are known to substantially reduce concentration of alpha1-antitrypsin (AAT) in the blood. Since low AAT serum levels fail to protect pulmonary tissue from enzymatic degradation, these polymorphisms also increase the risk for early onset chronic obstructive pulmonary disease (COPD). The role of more common SERPINA1 single nucleotide polymorphisms (SNPs) in respiratory health remains poorly understood.We present here an agnostic investigation of genetic determinants of circulating AAT levels in a general population sample by performing a genome-wide association study (GWAS) in 1392 individuals of the SAPALDIA cohort.Five common SNPs, defined by showing minor allele frequencies (MAFs) >5%, reached genome-wide significance, all located in the SERPINA gene cluster at 14q32.13. The top-ranking genotyped SNP rs4905179 was associated with an estimated effect of β = −0.068 g/L per minor allele (P = 1.20*10−12). But denser SERPINA1 locus genotyping in 5569 participants with subsequent stepwise conditional analysis, as well as exon-sequencing in a subsample (N = 410), suggested that AAT serum level is causally determined at this locus by rare (MAF<1%) and low-frequent (MAF 1–5%) variants only, in particular by the well-documented protein inhibitor S and Z (PI S, PI Z) variants. Replication of the association of rs4905179 with AAT serum levels in the Copenhagen City Heart Study (N = 8273) was successful (P<0.0001), as was the replication of its synthetic nature (the effect disappeared after adjusting for PI S and Z, P = 0.57). Extending the analysis to lung function revealed a more complex situation. Only in individuals with severely compromised pulmonary health (N = 397), associations of common SNPs at this locus with lung function were driven by rarer PI S or Z variants. Overall, our meta-analysis of lung function in ever-smokers does not support a functional role of common SNPs in the SERPINA gene cluster in the general population.  相似文献   

18.
Mutations in the SERPINA1 gene can cause deficiency in the circulating serine protease inhibitor α1-Antitrypsin (α1AT). α1AT deficiency is the major contributor to pulmonary emphysema and liver disease in persons of European ancestry, with a prevalence of 1 in 2500 in the USA. We present the discovery and characterization of a novel SERPINA1 mutant from an asymptomatic Middle Eastern male with circulating α1AT deficiency. This 49 base pair deletion mutation (T379Δ), originally mistyped by IEF, causes a frame-shift replacement of the last sixteen α1AT residues and adds an extra twenty-four residues. Functional analysis showed that the mutant protein is not secreted and prone to intracellular aggregation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号