首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the 5-hydroxytryptamine receptor 2B (5-HT2B), a Gq/11 protein-coupled receptor, results in proliferation of various cell types. The 5-HT2B receptor is also expressed on the pacemaker cells of the gastrointestinal tract, the interstitial cells of Cajal (ICC), where activation triggers ICC proliferation. The goal of this study was to characterize the mitogenic signal transduction cascade activated by the 5-HT2B receptor. All of the experiments were performed on mouse small intestine primary cell cultures. Activation of the 5-HT2B receptor by its agonist BW723C86 induced proliferation of ICC. Inhibition of phosphatidylinositol 3-kinase by LY294002 decreased base-line proliferation but had no effect on 5-HT2B receptor-mediated proliferation. Proliferation of ICC through the 5-HT2B receptor was inhibited by the phospholipase C inhibitor U73122 and by the inositol 1,4,5-trisphosphate receptor inhibitor Xestospongin C. Calphostin C, the α, β, γ, and μ protein kinase C (PKC) inhibitor Gö6976, and the α, β, γ, δ, and ζ PKC inhibitor Gö6983 inhibited 5-HT2B receptor-mediated proliferation, indicating the involvement of PKC α, β, or γ. Of all the PKC isoforms blocked by Gö6976, PKCγ and μ mRNAs were found by single-cell PCR to be expressed in ICC. 5-HT2B receptor activation in primary cell cultures obtained from PKCγ−/− mice did not result in a proliferative response, further indicating the requirement for PKCγ in the proliferative response to 5-HT2B receptor activation. The data demonstrate that the 5-HT2B receptor-induced proliferative response of ICC is through phospholipase C, [Ca2+]i, and PKCγ, implicating this PKC isoform in the regulation of cellular proliferation.Tight control of cell proliferation is essential to maintain organ size and function. Proliferation needs to be tightly regulated to maintain a critical mass of a particular cell type while preventing dysplasia or malignancy. Cell proliferation is regulated by a complex interaction between extrinsic and intrinsic factors. Extrinsic factors usually signal through cell surface receptors such as various growth factor receptors. 5-Hydroxytryptamine (5-HT,2 serotonin) is well established as a neurotransmitter and a paracrine factor with over 90% of 5-HT produced by the gastrointestinal tract (1, 2). There is now substantial evidence that, together with these established functions, 5-HT is involved in the control of cell proliferation through various 5-HT receptors, in particular the 5-hydroxytryptamine receptor 2B (5-HT2B (39)). The 5-HT2B receptor is Gq/11 protein-coupled. Activation of the 5-HT2B receptor regulates cardiac function, smooth muscle contractility, vascular physiology, and mood control. Recently it was demonstrated that activation of the 5-HT2B receptor also induces proliferation of neurons, retinal cells (3, 4), hepatocytes (5), osteoblasts (8), and interstitial cells of Cajal (ICC) (9). ICC express the 5-HT2B receptor, and activation by 5-HT induces proliferation of ICC (9). ICC are specialized, mesoderm-derived mesenchymal cells in the gastrointestinal tract. Their best known function is the generation of slow waves (10), but they also conduct and amplify neuronal signals (11, 12), release carbon monoxide to set the intestinal smooth muscle membrane potential gradient (13), and act as mechanosensors (14, 15). Loss of ICC has been associated with pathological conditions such as gastroparesis (1618), infantile pyloric stenosis (19, 20), pseudo-obstruction (21, 22), and slow transit constipation (23), whereas increased proliferation of ICC or their precursors is associated with gastrointestinal stromal tumors (24).The mechanisms by which activation of the 5-HT2B receptor results in increased proliferation are not well understood. In cultured cardiomyocytes, stimulation of the 5-HT2B receptor activated both phosphatidylinositol 3-kinase (PI3′-K)/Akt and ERK1/2/mitogen-activated protein kinase (MAPK) signaling pathways to protect cardiomyocytes from apoptosis (25). On the other hand, the 5-HT2 subfamily of receptors are also known to couple to phospholipase C (PLC) (2628).The objective of this study was to utilize the known expression of the 5-HT2B receptor on ICC to determine whether proliferation through the 5-HT2B receptor required PI3′-K or PLC. This study demonstrates that proliferation mediated by the 5-HT2B receptor requires PLC, intracellular calcium release, and the ERK/MAPK signaling pathway and identifies the PKC isoform activated by the 5-HT2B receptor in ICC as PKCγ.  相似文献   

2.
The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae, the cause of lobar pneumonia and invasive diseases. PspC interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. By adopting the retrograde machinery of human pIgR, this protein-protein interaction promotes colonization and transcytosis across the epithelial layer. Here, we explored the role of Rho family guanosine triphosphatases (GTPases), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) for ingestion of pneumococci via the human pIgR. Inhibition experiments suggested that the host-cell actin microfilaments and microtubules are essential for this pneumococcal uptake mechanism. By using specific GTPase-modifying toxins, inhibitors, and GTPase expression constructs we demonstrate that Cdc42, but not Rac1 and RhoA are involved in PspC-mediated invasion of pneumococci into host cells. Accordingly, Cdc42 is time-dependently activated during ingestion of pneumococci. In addition, PI3K and Akt are essential for ingestion of pneumococci by respiratory epithelial cells via the PspC-pIgR interaction. The subunit p85α of PI3K and Akt was activated during the infection process. Moreover, Akt activation upon pneumococcal invasion depends on PI3K. In conclusion, our results illustrate for the first time key signaling molecules of host cells that are required for PspC-pIgR-mediated invasion of pneumococci into epithelial cells. This unique and specific bacterial entry process is dependent on the cooperation and activation of Rho family GTPase Cdc42, PI3K, and Akt.Streptococcus pneumoniae (pneumococci) is (are) the etiologic agent of community-acquired pneumonia and life-threatening invasive diseases such as septicemia and bacterial meningitis (1). Pneumococci use several strategies to colonize the respiratory tract, which is considered to be the initial and essential step prior to their transmigration into the lungs and bloodstream. Adherence of pneumococci to host cells is facilitated by serum or matrix proteins such as Factor H, thrombospondin-1, and vitronectin (24). More importantly, pneumococci produce adhesins, which interact directly with cellular receptors and, consequently, these interactions promote bacterial adherence to and invasion into host cells (5). The pneumococcal surface protein C (PspC),3 also referred to as CbpA or SpsA, is a multifunctional choline-binding protein and a major adhesin of pneumococci residing on mucosal respiratory surfaces. PspC interacts directly and in a human-specific manner with the ectodomain of the polymeric immunoglobulin receptor (pIgR), which is also known as the secretory component (SC) (6). The PspC-hpIgR interaction has been characterized in detail on the molecular level and also on the structural level with regard to the PspC protein. A hexameric peptide within the N-terminal repeat domains (termed R1 or R2) of PspC recognizes human-specific amino acids in ectodomains D3 and D4 of pIgR (69). After binding to pIgR, pneumococci are ingested and transcytosed across epithelial cells by adopting the pIgR retrograde transcytosis machinery (7, 10). Additionally, the N terminus of PspC interacts in a human-specific manner with the innate immune regulator Factor H, and this interaction mediates immune evasion and adherence to host cells (2, 1113).The pIgR, which is broadly expressed by epithelial cells of the respiratory tract, mediates the transport of polymeric IgA (dIgA) or pIgM across the mucosal epithelial barriers from the basolateral to apical surface (14). Although unloaded pIgR undergoes constitutive transcytosis, binding of dIgA stimulates the receptor transcytosis in in vitro and in vivo situations (15, 16). The model of pIgR-dIgA transcytosis from the basolateral to the apical cell surface is based largely on studies using Madin-Darby canine kidney (MDCK) cells expressing exogenous rabbit or rat pIgR (1517). The studies provided important insights into receptor sorting, intracellular compartments involved in transcytosis, and regulation of the endocytic pathways (14). After endocytosis in clathrin-coated vesicles at the basolateral surface, pIgR is delivered in an actin- and microtubule-dependent manner to the common recycling endosomes. At the apical surface unloaded receptor can be recycled and transported in retrograde. The dIgA-stimulated pIgR transcytosis is regulated by Rho family GTPases, phosphatidylinositol-3-kinase (PI3K), and requires the production of secondary messengers, including inositol 1,4,5-triphosphate and free intracellular calcium (1723). In addition, the activation of these signaling molecules depends on the Src family protein tyrosine kinase p62yes and may stimulate a network of downstream pathways (24). Although it has become clear that pneumococci can adopt the pIgR-transcytosis machinery for invasion, the induced signal transduction cascades have not yet been explored. The goal of this study was, therefore, to assess the induced intracellular signaling pathways during PspC-hpIgR-mediated pneumococcal invasion into host cells. We asked whether this process depends on the dynamics of the actin cytoskeleton as suggested by earlier observations by electron microscopy (5) and which member(s) of the Rho family of small GTPases are the key players in this uptake mechanism. In addition, we have analyzed the role of the PI3K and of protein kinase B (Akt; also known as PKB). Akt is phosphorylated during activation, and phosphorylation at Ser-473 depends on PI3K activity (25, 26). By using GTPase-modifying toxins, pharmacological inhibitors, GTPase constructs, and GTPase activation assays we demonstrate for the first time that pneumococcal invasion via the PspC-hpIgR interaction requires the small GTPase member Cdc42, PI3K, and Akt activity.  相似文献   

3.
4.
While ovarian cancer remains the most lethal gynecological malignancy in the United States, there are no biomarkers available that are able to predict therapeutic responses to ovarian malignancies. One major hurdle in the identification of useful biomarkers has been the ability to obtain enough ovarian cancer cells from primary tissues diagnosed in the early stages of serous carcinomas, the most deadly subtype of ovarian tumor. In order to detect ovarian cancer in a state of hyperproliferation, we analyzed the implications of molecular signaling cascades in the ovarian cancer cell line OVCAR3 in a temporal manner, using a mass-spectrometry-based proteomics approach. OVCAR3 cells were treated with EGF1, and the time course of cell progression was monitored based on Akt phosphorylation and growth dynamics. EGF-stimulated Akt phosphorylation was detected at 12 h post-treatment, but an effect on proliferation was not observed until 48 h post-exposure. Growth-stimulated cellular lysates were analyzed for protein profiles between treatment groups and across time points using iTRAQ labeling and mass spectrometry. The protein response to EGF treatment was identified via iTRAQ analysis in EGF-stimulated lysates relative to vehicle-treated specimens across the treatment time course. Validation studies were performed on one of the differentially regulated proteins, lysosomal-associated membrane protein 1 (LAMP-1), in human tissue lysates and ovarian tumor tissue sections. Further, tissue microarray analysis was performed to demarcate LAMP-1 expression across different stages of epithelial ovarian cancers. These data support the use of this approach for the efficient identification of tissue-based markers in tumor development related to specific signaling pathways. LAMP-1 is a promising biomarker for studies of the progression of EGF-stimulated ovarian cancers and might be useful in predicting treatment responses involving tyrosine kinase inhibitors or EGF receptor monoclonal antibodies.Ovarian cancer is the leading cause of death from gynecologic malignancy in the United States, and the fifth leading cause of cancer-related deaths in women (1). Epithelial ovarian cancers are extensively heterogeneous; histological sub-classification by cell type includes serous, endometrioid, clear-cell, mucinous, transitional, squamous, and undifferentiated (2). Serous epithelial cancers are the most commonly diagnosed epithelial ovarian cancer subtype and are associated with the majority of ovarian-cancer-related deaths (1).From a molecular perspective, the basic characteristic of any cancerous cell is its ability to grow uncontrollably. As a cell proliferates, a cascade of molecular and morphological changes occurs, including the activation of signaling cascades that modulate cytoskeletal dynamics, cell cycle progression, and angiogenesis (35). In addition to the unrestrained aberrant proliferation of cancer cells, other processes are required for disease progression, including changes in cellular adhesion to endothelial cells and in the extracellular microenvironment (6). It is important to note, however, that cancer cell progression is not an instantaneous event, and the demarcation between non-cancer and cancer is not static. It is postulated that epithelial cancer cells transition to a highly motile and invasive mesenchymal cell type, and this epithelial-to-mesenchymal transition is a critical molecular mechanism in tumor progression and metastasis (6). Several important signaling cascades have been implicated in this transition, including those mediated by EGF, PDGF, and TGFβ and those involving PI3K/Akt activation (7, 8). Thus, biomarkers of cancer progression can serve as indicators of disease etiology and potential staging, as well as predictive markers of therapeutic regimen responses. The identification of differentially expressed proteins during cancer metastasis has the potential to be utilized both prognostically with regard to metastatic development and predictively, through the implementation of pathway-specific therapies.Molecular analyses indicate the oncogenic role of the epidermal growth factor receptor (EGFR) in several human cancers, including lung cancers and Her2-amplified breast cancers (9). However, less is known regarding the implications of aberrant EGFR expression in ovarian cancer progression, particularly in terms of increased activation of downstream signaling cascades and efficacious therapeutic regimens. Studies illustrate overamplification of the EGFR gene in between 4% and 22% of ovarian cancers, with aberrant protein expression in up to 60% of ovarian malignancies (1012). Aberrant EGFR expression has been associated with high tumor grade, increased cancerous cell proliferation, and poorer patient outcomes (1215). Gene amplification and the overexpression of other EGFR family members such as Her2 and ErbB3 have also been reported in epithelial ovarian cancers (15). Further, studies performed in vitro illustrate the ability of EGF to induce DNA synthesis and stimulate cell growth in OVCAR3 cells (16).Although EGFR and downstream EGF-regulated signaling cascades have been implicated in ovarian malignancies, the treatment of ovarian tumors with anti-EGFR agents has induced minimal response. Targeted EGFR therapies fall into two categories: monoclonal antibodies that target the receptor extracellular domain to prevent ligand binding, and tyrosine kinase inhibitors (TKIs), which aim to prevent the activation of downstream signaling cascades. Although EGFR inhibitors exhibit modest success in vitro, no agents have been approved by the U.S. Food and Drug Administration for the treatment of malignant ovarian tumors (17). Among other therapeutic approaches, studies have looked at the potential efficacy of the TKIs erlotinib and gefitinib in the treatment of ovarian cancers; unfortunately, neither drug was effective in eliciting a significant response in ovarian tumor treatment (12, 15, 18, 19). However, the identification of markers of pathway-stimulated processes might help to stratify disease and select patients with EGF signaling activation. The identified markers might facilitate the prediction of treatment responses.MS-based proteomic studies have been heavily implemented in the identification of candidate biomarkers in a variety of specimen sources ranging from epithelial ovarian cancer tissue to immortalized cell lines and cultured media (2022). The human adenocarcinoma OVCAR3 cell line is derived from an epithelial ovarian cancer with a high grade serous cell type and exhibits many of the molecular and morphological aspects of serous epithelial cancers (23, 24). This cell line can be stimulated to promote or inhibit cellular proliferation using various molecular agonists and antagonists (2325). Because of the molecular and morphological similarities between the OVCAR3 cell line and ovarian adenocarcinoma cells, it serves as an appropriate high-throughput surrogate for candidate biomarker identification. Further, the analysis of a single cell line allows for the identification of temporal protein regulation within a single homogeneous cell population using an orthogonal approach.In the present study, the OVCAR3 cell line was treated with the hyperproliferative molecule EGF or the PI3K/Akt inhibitor LY294002 over a 48-h time course. Three time points were analyzed for biochemical and molecular changes, including Akt phosphorylation status and increased proliferation. Additionally, growth-stimulated and growth-inhibited cellular lysates were analyzed using quantitative proteomics with iTRAQ and MS/MS, and these analyses illustrated comparable global protein profiles between treatment groups and across time points. Differentially expressed proteins were identified in growth-stimulated cells as opposed to control (vehicle-treated) cells. One of the differentially regulated proteins, lysosomal-associated membrane protein 1 (LAMP-1, also known as CD107a), was further verified via immunoblotting and immunohistochemical analyses in normal and ovarian cancer tissues, in addition to tissue microarray analysis. This study demonstrates that through the use of a growth-stimulated cell culture model using EGF, the rapid identification of differentially regulated proteins as proliferation progresses may be achieved via large-scale proteomic analyses. The identification of regulated proteins along the pathway of increased cellular growth and proliferation might serve a predictive role in treatment outcomes.  相似文献   

5.
Viral manipulation of the transduction pathways associated with key cellular functions such as actin remodeling, microtubule stabilization, and survival may favor a productive viral infection. Here we show that consistent with the vaccinia virus (VACV) and cowpox virus (CPXV) requirement for cytoskeleton alterations early during the infection cycle, PBK/Akt was phosphorylated at S473 [Akt(S473-P)], a modification associated with the mammalian target of rapamycin complex 2 (mTORC2), which was paralleled by phosphorylation at T308 [Akt(T308-P)] by PI3K/PDK1, which is required for host survival. Notably, while VACV stimulated Akt(S473-P/T308-P) at early (1 h postinfection [p.i.]) and late (24 h p.i.) times during the infective cycle, CPXV stimulated Akt at early times only. Pharmacological and genetic inhibition of PI3K (LY294002) or Akt (Akt-X and a dominant-negative form of Akt-K179M) resulted in a significant decline in virus yield (from 80% to ≥90%). This decline was secondary to the inhibition of late viral gene expression, which in turn led to an arrest of virion morphogenesis at the immature-virion stage of the viral growth cycle. Furthermore, the cleavage of both caspase-3 and poly(ADP-ribose) polymerase and terminal deoxynucleotidyl transferase-mediated deoxyuridine nick end labeling assays confirmed that permissive, spontaneously immortalized cells such as A31 cells and mouse embryonic fibroblasts (MEFs) underwent apoptosis upon orthopoxvirus infection plus LY294002 treatment. Thus, in A31 cells and MEFs, early viral receptor-mediated signals transmitted via the PI3K/Akt pathway are required and precede the expression of viral antiapoptotic genes. Additionally, the inhibition of these signals resulted in the apoptosis of the infected cells and a significant decline in viral titers.The family Poxviridae is a family of large, linear, double-stranded DNA viruses that carry out their entire life cycle within the cytoplasmic compartment of infected cells. Vaccinia virus (VACV) is a prototypical member of the genus Orthopoxvirus, which also includes the closely related cowpox virus (CPXV) (12, 52). The genomes of these viruses are approximately 200 kbp in length, with a coding capacity of approximately 200 genes. The genes involved in virus-host interactions are situated at both ends of the genome and are associated with the evasion of host immune defenses (1). These evasion mechanisms operate mainly extracellularly. For example, the secretion of soluble cytokine and chemokine receptor homologues blocks the receptor recognition by intercepting the cognate cytokine/chemokine in the extracellular environment. This mechanism facilitates viral attachment and entry into cells (1, 70). Therefore, decoy receptors for alpha interferon (IFN-α), IFN-β, IFN-γ, and tumor necrosis factor alpha play an important immunomodulatory role by affecting both the host antiviral and apoptotic responses.To counteract the host proapoptotic response, poxviruses have developed a number of antiapoptotic strategies, including the inhibition of apoptotic signals triggered by the extrinsic pathway (those mediated by death receptors such as tumor necrosis factor and Fas ligand) or the intrinsic pathway (mediated by the mitochondria and triggered upon viral infection) (1, 25, 70, 74). Many studies previously identified viral inhibitors that block specific steps of the intrinsic pathway. These include the VACV-encoded E3L, F1L, and N1L genes and the myxoma virus (MYXV)-encoded M11L gene, which block cytochrome c release (14, 20, 34, 39, 45, 75, 90), and the CPXV-encoded cytokine response modifier gene (CrmA) as well as the VACV-encoded SPI-2 gene, which inhibits both caspase-1 and caspase-8 (25, 58, 61, 74).An emerging body of evidence has also highlighted the pivotal role played by intracellular signaling pathways in Orthopoxvirus biology (18, 48, 92). We and others have shown that poxvirus manipulation of signaling pathways can be virus specific. For example, while both VACV and CPXV stimulate the MEK/extracellular signal-regulated kinase (ERK)/EGR-1 pathway during a substantial length of time of their infective cycle, the pathway is required only for VACV replication, whereas its role in CPXV biology has yet to be identified (71). MYXV, a rabbit-specific poxvirus, also activates the MEK/ERK pathway in a mouse model of poxvirus-host interactions. However, this stimulation led to the expression of IFN-β, which consequently blocked virus replication and possibly explains why MYXV has such a restricted host range (87).Another signaling molecule associated with viral replication is Akt kinase (also known as protein kinase B). The MYXV host range factor M-T5 is able to reprogram the intracellular environment, thereby increasing human tumor cell permissiveness to viral replication, which is directly associated with levels of phosphorylated Akt (88). In addition, M-T5 is functionally replaced by the host phosphatidylinositol 3-kinase (PI3K) enhancer A protein (92).The transmission of intracellular signals mediated by the serine/threonine kinase Akt to downstream molecules in response to diverse stimuli such as growth factors, insulin, and hormones is dependent upon the phosphorylation of serine 473 (S473-P) and threonine 308 (T308-P). This phosphorylation is mediated by mammalian target of rapamycin complex 2 (mTORC2) and phosphoinositide-dependent protein kinase 1 (PDK1), which act as downstream effectors of the PI3K/Akt/mTORC1 pathway (2, 66). PI3Ks are a family of enzymes (classes I to III) that generate lipid second messengers by the phosphorylation of plasma membrane phosphoinositides. Class IA PI3Ks consist of a catalytic subunit (p110, comprising the three isoforms α, β, and δ) and an adaptor/regulatory subunit (p85, comprising the two isoforms α and β) (for a detailed review, see reference 80).The Akt family of proteins is comprised of the three isoforms α, β, and γ, which are composed of an N-terminal pleckstrin homology domain, a central catalytic domain, and a C-terminal hydrophobic domain. Akt is recruited to the plasma membrane through the binding of its pleckstrin homology domain to the phosphatidylinositol 3,4,5-triphosphate (PIP3), which is a product of PI3K that is anchored to the plasma membrane. PDK1 is also recruited to the plasma membrane through interactions with PIP3. As both PDK1 and Akt interact with PIP3, PDK1 colocalizes with Akt and activates it by phosphorylating threonine 308 (T308-P) (2, 66). Following its activation, Akt phosphorylates a number of downstream substrates such as caspase-9, BAD, glycogen synthase kinase 3β (GSK-3β), and FKHR. This leads to the suppression of apoptosis, cell growth, survival, and proliferation (11, 16, 56).Another downstream target of PI3K/Akt is mTOR, a serine/threonine kinase that plays a central role in the regulation of cell growth, proliferation, survival, and protein synthesis (26). mTOR kinase has recently been found to be associated with two functionally distinct complexes in mammalian cells, known as mTORC1 and mTORC2 (63, 66). Although these multiprotein complexes share molecules in common, distinct adaptor proteins are recruited into each complex: regulatory-associated protein of TOR (raptor) is recruited into mTORC1, while rapamycin-insensitive companion of TOR (rictor) is recruited into mTORC2 (33, 64). While mTORC1 controls cell growth and protein translation and has proven to be rapamycin sensitive, mTORC2 regulates the actin cytoskeleton and is assumed to be rapamycin insensitive, even though under conditions of prolonged exposure to the drug, it appears to inhibit mTORC2 assembly (29, 64, 65). Additionally, it has been demonstrated that mTORC2 regulates the activity of Akt through the phosphorylation of S473 (S473-P). S473-P appears to be required for the full activation of Akt, since S473-P has been shown to enhance the subsequent phosphorylation of T308 by PDK1 (66, 67, 94). Moreover, the phosphorylation of both S473 and T308 results in a four- to fivefold increase in Akt activity compared to T308-P by PDK1 alone (66).The PI3K/PDK1/Akt(T308)/mTORC1 pathway regulates vital cellular processes that are important for viral replication and propagation, including cell growth, proliferation, and protein translation. This pathway is particularly important for the replication of DNA viruses, as their replication is cap dependent. However, the Akt signaling pathway can also negatively affect viral replication. The stress response downstream of Akt signaling, including hypoxia and energy and amino acid depletion, inhibits mTORC1 (5, 9, 69). Therefore, DNA viruses must overcome these constraints to translate their mRNAs.Pharmacological disruption of the PI3K/Akt pathway with the specific PI3K inhibitor LY294002 (2-morpholino-8-phenyl-4H-1-benzopyran-4-one) (82) has been reported to not only increase the cleavage of downstream molecules associated with proapoptotic activity [e.g., poly(ADP-ribose) polymerase (PARP) and the executioner caspase-3] (38, 41) but also promote microtubule stabilization, actin filament remodeling/cell migration, and bleb formation/viral infectivity (10, 35, 49, 54, 59).Because the PI3K/Akt and PI3K/Akt/mTOR pathways influence diverse cellular functions and possibly a healthy antiviral response, usurping these pathways could support an increase in viral replication. In support of this, a number of reports have demonstrated that either the PI3K/Akt or the PI3K/Akt/mTOR pathway plays a role in the replication of many viruses including flavivirus (38), hepatitis C virus (27), human immunodeficiency virus type 1 (93), human papillomavirus (44, 96), respiratory syncytial virus (77), coxsackievirus B3 (19), Epstein-Barr virus (17, 50, 73), human cytomegalovirus (36, 37, 72), herpes simplex virus type 1 (7, 83), varicella-zoster virus (60), Kaposi''s sarcoma-associated herpesvirus (89), adenovirus (55), and simian virus 40 (SV40) (95). With this in mind, we also investigated whether the PI3K/Akt pathway played a pivotal role in orthopoxvirus biology. In this study, we show that the VACV- and CPXV-stimulated PI3K/Akt pathway not only contributes to the prevention of host-cell death but also plays a beneficial role in the viral replication cycle.  相似文献   

6.
Intracellular pathogens need to establish a growth-stimulating host niche for survival and replication. A unique feature of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium is the creation of extensive membrane networks within its host. An understanding of the origin and function of these membranes is crucial for the development of new treatment strategies. However, the characterization of this compartment is very challenging, and only fragmentary knowledge of its composition and biogenesis exists. Here, we describe a new proteome-based approach to enrich and characterize Salmonella-modified membranes. Using a Salmonella mutant strain that does not form this unique membrane network as a reference, we identified a high-confidence set of host proteins associated with Salmonella-modified membranes. This comprehensive analysis allowed us to reconstruct the interactions of Salmonella with host membranes. For example, we noted that Salmonella redirects endoplasmic reticulum (ER) membrane trafficking to its intracellular niche, a finding that has not been described for Salmonella previously. Our system-wide approach therefore has the potential to rapidly close gaps in our knowledge of the infection process of intracellular pathogens and demonstrates a hitherto unrecognized complexity in the formation of Salmonella host niches.Bacterial pathogens have evolved sophisticated mechanisms enabling them to invade, reside in, and proliferate in a large range of eukaryotic hosts. This often involves hijacking the host phagosomal system, interfering with the host cell signaling and trafficking machinery, and establishing a replication niche to avoid clearance (1). Whereas some pathogens escape phagosomes and replicate in the host cytoplasm, most of the described pathogens replicate in membrane-bound, vacuole-like compartments (2). Such intracellular niches of various pathogens are diverse, and biogenesis often depends on the delivery of bacterial effector proteins into the host cell cytoplasm.Salmonella enterica, the causative agent of localized gastroenteritis and the life-threatening systemic infection known as typhoid fever, forms so-called Salmonella-containing vacuoles (SCVs)1 inside host cells (3). SCVs mature through continuous interactions with endocytic and recycling pathways, accompanied by a spatial shift from the side of internalization to the juxtanuclear position close to the microtubule-organizing center (4, 5). Whereas the initial maturation steps are similar to the canonical phagosome biogenesis, the formation of an extensive tubular membrane network extending from the mature SCV is unique to Salmonella-infected host cells. This network contains various tubular structures such as Salmonella-induced filaments (SIFs), sorting nexin tubules, Salmonella-induced secretory carrier membrane protein 3 tubules, and lysosome-associated membrane protein 1-negative tubules (57), distinguishable by individual organelle marker proteins. For instance, tubules decorated with lysosome-associated membrane protein 1 (LAMP1) are known as SIFs (8, 9). In this paper we refer to all host membranes modified by intracellular Salmonella as Salmonella-modified membranes (SMMs).In general, the appearance of SMMs coincides with the onset of bacterial replication, and both phenomena are dependent on the translocation of effector proteins of the Salmonella Pathogenicity Island 2 (SPI2)-encoded type III secretion system (T3SS) (10, 11). These effector proteins manipulate a large number of host cell processes and force the host cell to create a suitable microenvironment for Salmonella (7, 12, 13). Although many Salmonella effector proteins have been described (14), much less is known about the host proteins that are manipulated to foster bacterial growth.A systematic proteome-wide analysis would be an important step toward understanding the mechanisms used by Salmonella to reorganize the host cell endosomal system during intracellular proliferation. However, one major challenge is the need to distinguish host proteins directed toward the Salmonella-induced compartments from those that are present independent of an infection.In this report we describe a novel method for the enrichment of SMMs and utilize a comparative strategy to identify proliferation-relevant host proteins. This systematic characterization of the SMM proteome provides new insights into the cellular origin and biogenesis of SMMs and identifies host cell proteins modified by the activity of intracellular Salmonella.  相似文献   

7.
8.
A polyomavirus mutant (315YF) blocked in binding phosphatidylinositol 3-kinase (PI 3-kinase) has previously been shown to be partially deficient in transformation and to induce fewer tumors and with a significant delay compared to wild-type virus. The role of polyomavirus middle T antigen-activated PI 3-kinase in apoptosis was investigated as a possible cause of this behavior. When grown in medium containing 1d-3-deoxy-3-fluoro-myo-inositol to block formation of 3′-phosphorylated phosphatidylinositols, F111 rat fibroblasts transformed by wild-type polyomavirus (PyF), but not normal F111 cells, showed a marked loss of viability with evidence of apoptosis. Similarly, treatment with wortmannin, an inhibitor of PI 3-kinase, stimulated apoptosis in PyF cells but not in normal cells. Activation of Akt, a serine/threonine kinase whose activity has been correlated with regulation of apoptosis, was roughly twofold higher in F111 cells transformed by either wild-type virus or mutant 250YS blocked in binding Shc compared to cells transformed by mutant 315YF. In the same cells, levels of apoptosis were inversely correlated with Akt activity. Apoptosis induced by serum withdrawal in Rat-1 cells expressing a temperature-sensitive p53 was shown to be at least partially p53 independent. Expression of either wild-type or 250YS middle T antigen inhibited apoptosis in serum-starved Rat-1 cells at both permissive and restrictive temperatures for p53. Mutant 315YF middle T antigen was partially defective for inhibition of apoptosis in these cells. The results indicate that unlike other DNA tumor viruses which block apoptosis by inactivation of p53, polyomavirus achieves protection from apoptotic death through a middle T antigen–PI 3-kinase–Akt pathway that is at least partially p53 independent.Programmed cell death occurs during normal development and under certain pathological conditions. In mammalian cells, apoptosis can be induced by a variety of stimuli, including DNA damage (45), virus infection (54, 57), oncogene activation (25), and serum withdrawal (34, 37). Apoptosis can also be blocked by a number of factors, including adenovirus E1B 55- or 19-kDa proteins (9, 16), baculovirus p35 and iap genes (10), Bcl-2 (36, 61), and survival factors (12, 21). DNA tumor viruses have evolved mechanisms that both trigger and inhibit apoptosis. These frequently involve binding and inactivation of tumor suppressor proteins. E7 in some papillomaviruses (22), E1A in adenovirus (31, 43, 64), and large T antigen in simian virus 40 (SV40) (17) bind Rb and/or p300 and lead to upregulation of p53, which is thought to trigger apoptosis in virus-infected cells. The same viruses also inhibit apoptosis by inactivating p53 by various mechanisms (44, 63, 67). In contrast, the mechanism by which polyomavirus interacts with apoptotic pathways in the cell is not known; no direct interaction with p53 by any of the proteins encoded by this virus has been demonstrated (19, 62).The principal oncoprotein of polyomavirus is the middle T antigen. Neoplastic transformation by polyomavirus middle T antigen has as a central feature its association with and activation of members of the Src family of tyrosine kinases p60c-src (13) and p62c-yes (42). The major known consequence of these interactions is phosphorylation of middle T antigen on specific tyrosine residues creating binding sites for other signaling proteins. Phosphorylation at tyrosines 250, 315, and 322 promotes binding to Shc (18), the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) (59), and phospholipase Cγ-1 (58), respectively. Recognition of multiple signaling pathways emanating from middle T antigen has led to a keen interest in identifying their downstream biochemical effects, which collectively lead to the emergence of neoplastic transformation and presumably underlie the dramatic ability of the virus to induce many kinds of tumors in the mouse.Previous work has shown that the binding of PI 3-kinase to middle T antigen is essential for full transformation of rat fibroblasts in culture (8) and for rapid development of a broad spectrum of tumors in mice (30), for translocation of the GLUT1 transporter (68), and activation of p70 S6 kinase (14). While the mutant 315YF (blocked in PI 3-kinase activation) was able to induce some tumors, it did so at reduced frequencies and with an average latency three times longer than that of either the wild-type virus or a mutant, 250YS, blocked in binding Shc (4, 30). Recent studies have indicated a role of PI 3-kinase in blocking apoptosis in nonviral systems. Growth factor receptors acting through protein tyrosine kinases may prevent apoptosis by activating PI 3-kinase in PC12 cells, T lymphocytes, hematopoietic progenitors, and rat fibroblasts (7, 48, 56, 65, 66). The failure of mutant 315YF to induce full transformation of cells in culture and to induce the rapid development of tumors in mice could therefore be related, at least in part, to a failure to block apoptosis. In this study, we focus on the question of whether middle T antigen–PI 3-kinase interaction is involved in blocking apoptosis in cells transformed by polyomavirus.  相似文献   

9.
10.
11.
12.
13.
14.
Integrins mediate cell adhesion and motility on the extracellular matrix, yet they also promote viral attachment and/or entry. Evidence is presented that adenovirus internalization by αv integrins requires activation of phosphoinositide-3-OH kinase (PI3K), whereas αv integrin-mediated cell motility depends on the ERK1/ERK2 mitogen-activated protein kinase pathway. Interaction of adenovirus with αv integrins induced activation of PI3K. Pharmacologic or genetic disruption of endogenous PI3K activity blocked adenovirus internalization and virus-mediated gene delivery yet had no effect on integrin-mediated cell adhesion or motility. Therefore, integrin ligation engages distinct signaling pathways that promote viral endocytosis or cell movement.Adenovirus entry into host cells depends on αv integrin binding to the penton base viral coat protein (2, 20, 48). A highly mobile protrusion on the adenovirus penton base contains the arginine-glycine-aspartic acid (RGD) sequence which mediates αv integrin binding (42). Integrins are more noted for their ability to mediate cell surface recognition of the extracellular matrix, thereby facilitating adhesion, migration (24), and cell growth and differentiation (28). These interactions have been associated with cell differentiation and tissue development, angiogenesis, wound repair, cancer, and inflammation (22).A number of cell signaling molecules that are associated with integrin-mediated cellular processes, including adhesion, survival, and motility, have recently been identified (18, 32, 34). For example, the signaling molecule pp125FAK focal adhesion kinase (FAK) (35) is localized to clustered integrins following ligation by extracellular matrix proteins. Engagement (clustering) of integrins by its ligands increases tyrosine phosphorylation and activation of FAK (29). Potential downstream substrates of FAK are the ERK1/ERK2 mitogen-activated protein (MAP) kinases (8, 40) and phosphoinositide-3-OH kinase (PI3K) (7, 17).Recent studies have demonstrated that ligation of αv and β1 integrins by the extracellular matrix leads to engagement of the ERK1/ERK2 MAP kinase pathway (24). Integrin-mediated regulation of the ERK1/ERK2 MAP kinase pathway results in the activation of myosin light chain kinase and subsequently to phosphorylation of myosin light chains. These molecular events culminate in enhanced cell motility. Cell motility, but not cell adhesion or spreading, can be blocked by ERK antisense oligonucleotides or by the compound PD98059, a specific inhibitor of MEK MAP kinase (24), indicating that the ERK1/ERK2 MAP kinase pathway plays a specific role in cell movement.PI3K (44) is another downstream effector of FAK. PI3K is a member of a family of lipid kinases comprised of a p85 regulatory subunit and a p110 catalytic subunit. The p85 subunit of PI3K binds directly to phosphorylated FAK (6). The products of PI3K activation, phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate (PIP3), are increased in the plasma membrane of activated but not quiescent cells and have been proposed to act as second messengers for a number of cell functions (5), including cell cycle progression (9) and cytoskeletal changes underlying the cell plasma membrane (47). PI3K activation also modulates intracellular protein trafficking (41), although a direct role of PI3K in receptor-mediated endocytosis has not been established.While integrins play an important role in adenovirus entry and in cell migration, the precise mechanisms by which these receptors promote these distinct biological functions are not known. In the studies reported here, we demonstrate that a specific signaling event is involved in the cell entry of a human viral pathogen. Evidence is provided that PI3K is activated upon adenovirus interaction with αv integrins and that this event is required for adenovirus internalization. Surprisingly, activation of ERK1/ERK2 following integrin ligation was necessary for cell migration but not for internalization of adenovirus.  相似文献   

15.
16.
17.
18.
We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.Activated tyrosine kinase receptors generally drive cells to assimilate nutrients; regulate partitioning of the assimilate to make storage polymers and biosynthetic precursors and for energy production; and promote cellular survival, growth, division, movement, and differentiation. From this spectrum, each cell displays a specific subset of responses depending on the hormone, specific receptors, cross-talk from other signaling pathways, metabolic conditions, and cellular complement of effector proteins. For example, insulin stimulates glucose uptake and glycogen synthesis in skeletal muscle, whereas IGF11 promotes survival, growth, and proliferation of many cell types (1, 2).Many of these cellular responses are mediated via PI 3-kinase, which generates phosphatidylinositol 3,4,5-trisphosphate, promoting the activation of AGC protein kinases such as PKB/Akt and other signaling components (1, 3). PI 3-kinase is activated by binding to tyrosine-phosphorylated receptors such as the platelet-derived growth factor receptor or via adaptor molecules such as insulin receptor substrates, which are phosphorylated by the activated insulin receptor. Deregulated PI 3-kinase and downstream signaling has been linked to problems with wound healing, immune responses, neurodegeneration, and cardiovascular disease; decreased PI 3-kinase signaling may underlie insulin resistance and type II diabetes; and this pathway is often activated in human tumors (4, 5). To help pinpoint drug targets for these diseases we must define the mechanisms linking PI 3-kinase and other signaling pathways to downstream effectors and understand specificity with respect to different hormone/cell type combinations.Many missing substrates of PI 3-kinase/AGC kinases must be found to explain all the cellular responses to insulin and growth factors (3). Several targets of PI 3-kinase/PKB signaling, including TSC2 (6), PRAS40 (7), AS160 (8), and FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase (9) were identified using the anti-PAS antibody, which loosely recognizes the minimal phosphorylated consensus for PKB, which is RXRXX(pS/pT) where pS is phosphoserine and pT is phosphothreonine. Another helpful feature for identifying new downstream targets is that phosphorylation by PKB sometimes creates binding sites for 14-3-3s, which are dimeric proteins that bind to specific phosphorylated sites on target proteins. Thus PKB promotes the binding of 14-3-3s to proteins including PFKFB2 cardiac PFK-2 (10, 11), BimEL (12), β-catenin (13), p27(Kip1) (14), PRAS40 (7), FOXO1 (15), Miz1 (16), TBC1D4 (AS160 (17, 18), and TBC1D1 (19). Functionally 14-3-3s can trigger changes in the conformations of their targets and alter how targets interact with other proteins. Consistent with 14-3-3/target interactions being important in cellular responses to growth factors and insulin, reagents that compete with targets for binding to 14-3-3s inhibit the IGF1-stimulated increase in the glycolytic stimulator fructose-2,6-bisphosphate (10) and PKB-dependent cell survival (20).Some 14-3-3-binding sites on the above named proteins can also be phosphorylated by other basophilic protein kinases (21). For example, AS160 and TBC1D1 are two related RabGAPs (GTPase-activating protein for Rabs) regulated by multisite phosphorylation that regulate trafficking of GluT4 transporter to the plasma membrane for uptake of glucose. The two 14-3-3-binding sites on AS160 can be phosphorylated by PKB, p90RSK, serum- and glucocorticoid-inducible kinase, and other kinases, whereas one of the 14-3-3-binding sites on TBC1D1 is also a substrate of the energy-sensing kinase AMP-activated protein kinase (1719). Thus, the relative sensitivity of glucose trafficking to insulin and AMP-activated protein kinase activators in different tissues may depend in part on the distribution of AS160 and TBC1D1. Other insulin-regulated 14-3-3 targets, such as myosin 1C (22), are also convergence points for phosphorylation by more than one AGC and/or Ca2+/calmodulin-dependent protein kinase.Here many more proteins than those already identified were found to display 14-3-3 and/or PAS binding signals when the PI 3-kinase pathway was activated in cells against a “background” of other proteins whose 14-3-3 and PAS binding status was unaffected by PI 3-kinase signaling. We aimed to pick out the PI 3-kinase-regulated proteins, which was challenging given the hundreds of 14-3-3 binding partners in mammalian cells (10, 2327). We used 14-3-3 affinity capture and release, identified phosphopeptides, and devised a quantitative proteomics approach in which 14-3-3-binding proteins from insulin-stimulated versus unstimulated cells were labeled with formaldehyde containing light or heavy isotopes, respectively. Biochemical checking of candidates from these screens, which included proteins with links to diabetes, cancers, and neurodegenerative disorders, confirmed the identification of novel downstream targets of PI 3-kinase, some of which are also convergence points for regulation by MAPK/p90RSK signaling.  相似文献   

19.
Salmonella are closely related to commensal Escherichia coli but have gained virulence factors enabling them to behave as enteric pathogens. Less well studied are the similarities and differences that exist between the metabolic properties of these organisms that may contribute toward niche adaptation of Salmonella pathogens. To address this, we have constructed a genome scale Salmonella metabolic model (iMA945). The model comprises 945 open reading frames or genes, 1964 reactions, and 1036 metabolites. There was significant overlap with genes present in E. coli MG1655 model iAF1260. In silico growth predictions were simulated using the model on different carbon, nitrogen, phosphorous, and sulfur sources. These were compared with substrate utilization data gathered from high throughput phenotyping microarrays revealing good agreement. Of the compounds tested, the majority were utilizable by both Salmonella and E. coli. Nevertheless a number of differences were identified both between Salmonella and E. coli and also within the Salmonella strains included. These differences provide valuable insight into differences between a commensal and a closely related pathogen and within different pathogenic strains opening new avenues for future explorations.Salmonella is a major cause of human and animal enteric disease. Salmonella consists of two species, bongori and enterica, and the latter can be further divided into subspecies (I-VI). The majority of human and animal infections are caused by S. enterica subspecies I, of which Salmonella typhimurium and Salmonella enteritidis are the most prevalent causes of human inflammatory gastroenteritis, often referred to as food poisoning (1). The recent availability of genome sequences of bacterial pathogens, including Salmonella, provides an opportunity to interrogate these organisms using a systems biology approach. By contrasting the genotype-phenotype relationship of pathogens such as Salmonella against closely related commensals such as an Escherichia coli K12 insights can be revealed into how these pathogens have adapted to their environmental niche(s). Salmonella and E. coli K12 share ∼85% of their genome (26). DNA microarray and genome sequencing studies have highlighted regions of the genome that are conserved between these closely related bacteria and those that are different. Many of the differences are attributable to the acquisition of virulence factors, although a significant proportion of their genome codes is for metabolic genes (28).A genome scale model consists of a stoichiometric reconstruction of all reactions known to act in the metabolism of an organism along with a set of accompanying constraints on the flux of each reaction in the system (9, 10). These models define the organism''s global metabolic space, network structural properties, and flux distribution potential (9, 10). Therefore constraint-based models can help predict cellular phenotypes given particular environmental conditions. Genome scale models have been useful in understanding the metabolic properties of a variety of organisms including E. coli, Bacillus subtilis, Pseudomonas putida, and Lactobacillus (912). Genome scale models can be validated in various ways such as continuous culture experiments, substrate utilization assays, specific gene mutations, and isotopic carbon measurements. The high through-put phenotype microarray (PM)3 system that is available through Biolog (Hayward, CA) is ideal to use for substrate utilization assays as it provides a comprehensive large-scale phenotyping technology to assess gene function at the cellular level (13).The aim of this work was to construct a Salmonella genome scale model. The model highlights the similarities and differences between pathogenic bacteria such as S. typhimurium and S. enteritidis and the commensal E. coli K12 laboratory strains. The model was validated using the PM system and literature-derived (i.e. bibliomic) information. The substrate utilization assays also highlighted current knowledge gaps that will require further experimental data that can be used in the future for refining and extending the model.  相似文献   

20.
In bacteria, mitotic stability of plasmids and many chromosomes depends on replicon-specific systems, which comprise a centromere, a centromere-binding protein and an ATPase. Dynamic self-assembly of the ATPase appears to enable active partition of replicon copies into cell-halves, but for Walker-box partition ATPases the molecular mechanism is unknown. ATPase activity appears to be essential for this process. DNA and centromere-binding proteins are known to stimulate the ATPase activity but molecular details of the stimulation mechanism have not been reported. We have investigated the interactions which stimulate ATP hydrolysis by the SopA partition ATPase of plasmid F. By using SopA and SopB proteins deficient in DNA binding, we have found that the intrinsic ability of SopA to hydrolyze ATP requires direct DNA binding by SopA but not by SopB. Our results show that two independent interactions of SopA act in synergy to stimulate its ATPase. SopA must interact with (i) DNA, through its ATP-dependent nonspecific DNA binding domain and (ii) SopB, which we show here to provide an arginine-finger motif. In addition, the latter interaction stimulates ATPase maximally when SopB is part of the partition complex. Hence, our data demonstrate that DNA acts on SopA in two ways, directly as nonspecific DNA and through SopB as centromeric DNA, to fully activate SopA ATP hydrolysis.Faithful segregation of low copy number plasmids in bacteria depends on partition loci, named Par. Such loci are composed of two genes, generically termed parA and parB, encoding an ATPase and a DNA-binding protein, respectively, and a cis-acting centromeric site parS (reviewed in Ref. 1). These three essential elements are sufficient for the partition process. ParBs assemble on parS to form nucleoprotein structures called partition complexes (26). ParA ATPases are considered to be motors that direct displacement and positioning of partition complexes inside the cell.Partition systems have been classified into two major types, distinguished by the nature of their ATPase proteins (7). Type I is characterized by Walker box ATPases, which are specified by many plasmids and most bacterial chromosomes. In some (Type Ia) the nucleotide-binding P-loop is preceded by an N-terminal regulatory domain, in the others (Type Ib) it is not. Type II specifies actin-like ATPases and is present on relatively few plasmids. It is presently the best understood system at the molecular level (810). However, the underlying mechanism that drives partition still remains elusive for both systems. Our work aims at the understanding of an archetypal representative of Type Ia, namely SopABC of the Escherichia coli plasmid F.The several activities of Type Ia ParA proteins are regulated by binding of adenine nucleotides (11, 12), which induce conformational changes in the proteins (13, 14). In their apo and/or ADP-bound forms these proteins display site-specific DNA binding activity, recognizing their cognate promoters through their N-terminal domains. Such activity is involved in the autoregulation of par operon expression (15, 16). In the ATP-bound form, they specifically interact with cognate partition complexes through contact with ParB proteins. The ATP-bound form of type I ParAs spontaneously forms polymers, which appear as bundled filaments in electron micrographs (12, 1719). The role of these filaments is not understood but they could be related to the rapid movement of partition complexes in the cell. In vivo, ParA proteins form dynamic assemblies that move back and forth in the cell if the cognate ParB protein and parS centromere are present (2023). The link between this oscillatory behavior and the segregation of partition complexes is not clear. They both require the ATPase activity of ParA proteins but the role of ATP hydrolysis in the partition process is not understood.It has long been known that ParA partition proteins exhibit low intrinsic ATPase activity (24, 25). ATP hydrolysis is modestly stimulated by either DNA or the cognate ParB alone but is strongly activated (up to 35-fold) when both DNA and ParBs are present (12, 24, 25). The lack of major stimulation of ATPase by DNA in the absence of ParB proteins has been taken to mean that the DNA-bound form of ParB is the effective activator (26). However, incorporation of centromere sites in the DNA added to ParB did not increase stimulation of ATPase (24, 25), leaving doubts as to the role of the partition complex in ATPase activation.The mechanism by which ATP hydrolysis acts in the partition process is not known for type I systems. This is in marked contrast to actin-based partition ATPases whose ATPase activity is stimulated in growing filaments (8), where it provokes the rapid disassembly of filaments unless these are capped by the cognate partition complex (9). Therefore, for the type II partition system, ATP hydrolysis ensures discrimination between unproductive filaments that are rapidly disassembled and productive filaments that drive partition complexes to opposite ends of the cell. This dynamic instability, which ensures elongation of actin-like filaments only between two partition complexes to be segregated, thus provides regulation of the partition process.Recently, it has been shown that two members of the type I ParA family, Soj of Thermus thermophilus and SopA of plasmid F, bind nonspecific DNA in the presence of ATP (12, 26). Two studies revealed that this DNA binding activity is essential for partition (27, 28). Importantly, it has been shown that a SopA mutant deficient in DNA binding no longer stimulates ATP hydrolysis efficiently, suggesting that DNA could play a direct role in the regulation of the ATPase activity (28). This finding raises the issue of the interactions required for activation of the type I partition ATPase activity by cognate proteins and DNA.In this study, we have investigated the mechanism of activation of ATP hydrolysis by SopA. First, we have found that the formation of the F partition complex is required for strong stimulation of the SopA intrinsic ATPase activity. We have also found that the partition complex and DNA stimulate ATP hydrolysis independently but that these two independent interactions act in synergy to amplify SopA ATPase activity. Lastly, we have identified an arginine finger motif in SopB responsible for the stimulation of SopA ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号