首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Three kinds of diketopiperazines which have retarditive activity for the growth of plant seedlings and plant roots at concentrations ranging from 1 : 2,500 to 1 : 100,000, were isolated from the neutral fraction by extracting the cultured broth of Rosellinia necatrix. These three diketopiperazines have been proved to be l-prolyl-l-leucine anhydride, l-prolyl-l-valine anhydride and l-prolyl-l-phenylalanine anhydride respectively, and the last one seems to be a new diketo-piperazine.

Furthermore, a crystalline wax having m.p. 52°C, a physiologically inactive substance, was also isolated from the same neutral fraction and presumed to be the saturated hydrocarbon of n-pentacosane C25H52.  相似文献   

3.
病原微生物感染对人类健康构成巨大威胁,先天免疫系统是生物体在长期进化过程中建立起来的天然保护系统。VISA(MAVS,CARDIF,IPS-1[1-3])是连接胞浆dsRNA受体RIG-I与下游信号转导通路的一个接头蛋白,研究结果表明VISA无论在TLR3非依赖的或者TLR3介导的抗病毒IFN信号途径中都具有关键作用,但目前对VISA信号转导的详细机制还不十分清楚。更多VISA相互作用蛋白的发现以及它们之间的作用机制的研究能完善我们对VISA参与的信号转导机制的认识。利用酵母双杂交系统,用VISA蛋白的全长做诱饵(Bait)筛选293 T细胞c DNA表达文库,并结合免疫共沉淀实验,双荧光素酶报告基因系统验证筛选到的阳性克隆和VISA作用的真实性。通过酵母双杂交系统成功筛选到Sec13L1候选基因并验证了其与VISA的全长蛋白相互作用,在293 T细胞中过表达该基因,研究结果显示Sec13L1过表达能促进VISA对IFNβ的诱导,并存在剂量效应。  相似文献   

4.
The food-grade yeast Candida utilis has been engineered to confer a novel biosynthetic pathway for the production of carotenoids such as lycopene, β-carotene, and astaxanthin. The exogenous carotenoid biosynthesis genes were derived from the epiphytic bacterium Erwinia uredovora and the marine bacterium Agrobacterium aurantiacum. The carotenoid biosynthesis genes were individually modified based on the codon usage of the C. utilis glyceraldehyde 3-phosphate dehydrogenase gene and expressed in C. utilis under the control of the constitutive promoters and terminators derived from C. utilis. The resultant yeast strains accumulated lycopene, β-carotene, and astaxanthin in the cells at 1.1, 0.4, and 0.4 mg per g (dry weight) of cells, respectively. This was considered to be a result of the carbon flow into ergosterol biosynthesis being partially redirected to the nonendogenous pathway for carotenoid production.Carotenoids are yellow, orange, and red pigments which are widely distributed in nature (3). Industrially, carotenoid pigments such as β-carotene are utilized as food or feed supplements. β-Carotene is also a precursor of vitamin A in mammals (11). Recently, carotenoids have attracted greater attention, due to their beneficial effect on human health: e.g., the functions of lycopene and astaxanthin include strong quenching of singlet oxygen (12), involvement in cancer prevention (2), and enhancement of immune responses (6). Astaxanthin has also been exploited for industrial use, principally as an agent for pigmenting cultured fish and shellfish.The genes responsible for the synthesis of carotenoids such as lycopene, β-carotene, and astaxanthin have been isolated from the epiphytic Erwinia species or the marine bacteria Agrobacterium aurantiacum and Alcaligenes sp. strain PC-1, and their functions have been elucidated (13, 14). The first substrate of the encoded enzymes for carotenoid synthesis is farnesyl pyrophosphate (diphosphate) (FPP), which is the common precursor for the biosynthesis of numerous isoprenoid compounds such as sterols, hopanols, dolicols, and quinones. The ubiquitous nature of FPP among yeasts has been utilized in the microbial production of lycopene and β-carotene by the yeast Saccharomyces cerevisiae carrying the Erwinia uredovora carotenogenic genes (19). However, the amount of carotenoids produced in these hosts was only 0.1 mg of lycopene and 0.1 mg of β-carotene per g (dry weight) of cells, respectively.The edible yeast Candida utilis is generally recognized as a safe substance by the Food and Drug Administration. Large-scale production of the yeast cells has been developed with cheap biomass-derived sugars as the carbon source for the production of single-cell protein and several chemicals such as glutathione and RNA (1, 4). This yeast was also found to accumulate a large amount of ergosterol in the cell during stationary phase (6 to 13 mg/g [dry weight] of cells) (17). Thus, C. utilis has the potential to produce a large amount of carotenoids by redirecting the carbon flux for the ergosterol biosynthesis into the nonendogenous pathway for carotenoid synthesis via FPP. Previously, a C. utilis strain was made to produce lycopene (0.8 mg/g [dry weight]) by expressing the three nonmodified genes crtE, crtB, and crtI derived from E. uredovora (15).In this paper, the de novo biosynthesis of lycopene, β-carotene, and astaxanthin has been performed in C. utilis by using six carotenogenic genes, which were synthesized according to the codon usage of the C. utilis glyceraldehyde-3-phosphate dehydrogenase (GAP) gene, which is expressed at high levels. By this approach, increased carotenoid production in C. utilis was achieved.  相似文献   

5.
The kinetochore is a protein complex that assembles on centromeric DNA to mediate chromosome–microtubule interaction. Most eukaryotic cells form the spindle and establish kinetochore–microtubule interaction during mitosis, but budding yeast cells finish these processes in S-phase. It has long been noticed that the S-phase spindle in budding yeast is shorter than that in metaphase, but the biological significance of this short S-phase spindle structure remains unclear. We addressed this issue by using ask1-3, a temperature-sensitive kinetochore mutant that exhibits partially elongated spindles at permissive temperature in the presence of hydroxyurea (HU), a DNA synthesis inhibitor. After exposure to and removal of HU, ask1-3 cells show a delayed anaphase entry. This delay depends on the spindle checkpoint, which monitors kinetochore–microtubule interaction defects. Overproduction of microtubule-associated protein Ase1 or Cin8 also induces spindle elongation in HU-arrested cells. The spindle checkpoint-dependent anaphase entry delay is also observed after ASE1 or CIN8 overexpression in HU-arrested cells. Therefore, the shorter spindle in S-phase cells is likely to facilitate proper chromosome–microtubule interaction.  相似文献   

6.
We planned to develop predator–prey models using Paramecium and yeast, but they have not been empirically examined since work by Gause in the 1930s. Therefore, we evaluated if Paramecium aurelia ingests and grows on eight yeasts. Recognising that it ingested yeasts but could not grow, we assessed if it might grow on other yeasts, by empirically parameterising a predator–prey model that relies on ingestion, not growth. Simulations were compared to P. aurelia‐yeast time‐series data, from Gause. We hypothesised that if the model simulated predator–prey dynamics that mimicked the original data, then possibly P. aurelia could grow on yeast; simulations did not mimic the original data. Reviewing works by Gause exposed two issues: experiments were undoubtedly contaminated with bacteria, allowing growth on bacteria, not yeast; and the population cycle data cannot be considered a self‐sustaining time series, as they were manipulated by adding yeast and ciliates. We conclude that past and future work should not rely on this system, for either empirical or theoretical evaluations. Finally, although we show that P. aurelia, P. caudatum, Euplotes patella, and Blepharisma sp. cannot grow on yeast, Tetrahymena pyriformis and Colpidium striatum can; these may provide models to explore predator–prey dynamics.  相似文献   

7.
Yeast基因组编码区特征参数的研究   总被引:1,自引:0,他引:1  
以碱基成分偏移量D值为基本参数定义参数d,以d为Yeast编码区的特征参数,对Yeast的第1、2、3类ORF(open reading frame)进行了统计,得到d的特征参数区间,并且,以此区间为标准为Yeast的6类ORF,以及5′帽、3′尾、内含子、组分随机序列等非编码序列进行了检验。结果表明,d作编码区的特征参数是可行的,它可以很好地区分编码序列和非编码序列。别外,又讨论了参数d与基因表达水平(用CAI值来衡量)的关系。发现,参数d与基因表达水平成很好的正相关关系。发现密码子的第1位点和第2位点的某些碱基分布与基因表达水平有关。  相似文献   

8.
Yeast cell-surface display—applications of molecular display   总被引:11,自引:0,他引:11  
In a cell-surface engineering system established using the yeast Saccharomyces cerevisiae, novel, so-called arming yeasts are constructed that are armed with biocatalysts in the form of enzymes, functional proteins, antibodies, and combinatorial protein libraries. Among the many advantages of the system, in which proteins are genetically displayed on the cell surface, are easy reproduction of the displayed biocatalysts and easy separation of product from catalyst. As proteins and peptides of various kinds can be displayed on the yeast cell surface, the system is expected to allow the preparation of tailor-made functional proteins. With its ability to express many of the functional proteins necessary for post-translational modification and in a range of different sizes, the yeast-based molecular display system appears uniquely useful among the various display systems so far developed. Capable of conferring novel additional abilities upon living cells, cell-surface engineering heralds a new era of combinatorial bioengineering in the field of biotechnology. This mini-review describes molecular display using yeast and its various applications.  相似文献   

9.
A method for the preparatoin of diphosphopyridine nucleotide (DPN) from bakers’ yeast is described. This method consists of partial purification of crude extract of yeast by charcoal chromatography according to Pontis and coworkers, ion-exchange chromatography on Dowex-l acetate, and precipitation of DPN as the free acid with ethanol. 0.71~.1.1 g of DPN with a purity of 85~90% was obtained from 5 kg of fresh bakers’ yeast by this method.  相似文献   

10.
In various eukaryotes, sterol-rich membrane domains have been proposed to play an important role in polarization and compartmentalization of the plasma membrane. Several studies have reported the cellular distribution of sterols in genetically tractable yeast species and the identification of molecules that might regulate the localization of sterol-rich membrane domains. Here, we attempt to synthesize our understanding of the function and organization of these domains from the study of fungi and identify some outstanding issues.  相似文献   

11.
The aim of this study was to evaluate the effect of nano-selenium (NS) and yeast?Cselenium (YS) supplementation on feed digestibility, rumen fermentation, and urinary purine derivatives in sheep. Six male ruminally cannulated sheep, average 43.32?±?4.8?kg of BW, were used in a replicated 3?×?3 Latin square experiment. The treatments were control (without NS and YS), NS with 4?g nano-Se (provide 4?mg Se), and YS with 4?g Se-yeast (provide 4?mg Se) per kilogram of diet dry matter (DM), respectively. Experimental periods were 25?days with 15?days of adaptation and 10?days of sampling. Ruminal pH, ammonia N concentration, molar proportion of propionate, and ratio of acetate to propionate were decreased (P?<?0.01), and total ruminal VFA concentration was increased with NS and YS supplementation (P?<?0.01). In situ ruminal neutral detergent fiber (aNDF) degradation of Leymus chinensis (P?<?0.01) and crude protein (CP) of soybean meal (P?<?0.01) were significantly improved by Se supplementation. Digestibilities of DM, organic matter, crude protein, ether extract, aNDF, and ADF in the total tract and urinary excretion of purine derivatives were also affected by feeding Se supplementation diets (P?<?0.01). Ruminal fermentation was improved by feeding NS, and feed conversion efficiency was also increased compared with YS (P?<?0.01). We concluded that nano-Se can be used as a preferentially available selenium source in ruminant nutrition.  相似文献   

12.
Programmed cell death (PCD) serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Despite the striking heterogeneity of cell death induction pathways, the execution of the death program is often associated with characteristic morphological and biochemical changes termed apoptosis. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of programmed cell death. This crucial position of mitochondria in programmed cell death control is not due to a simple loss of function (deficit in energy supplying), but rather to an active process in the regulation of effector mechanisms.The large diversity of regulators of apoptosis in mammals and their numerous interactions complicate the analysis of their individual functions. Yeast, eukaryotic but unicellular organism, lack the main regulators of apoptosis (caspases, Bcl-2 family members, . . .) found in mammals. This absence render them a powerful tool for heterologous expression, functional studies, and even cloning of new regulators of apoptosis.Great advances have thus been made in our understanding of the molecular mechanisms of Bcl-2 family members interactions with themselves and other cellular proteins, specially thanks to the two hybrid system and the easy manipulation of yeast (molecular biology and genetics).This review will focus on the use of yeast as a tool to identify new regulators and study function of mammalian apoptosis regulators.  相似文献   

13.
14.
Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-ACnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase α (Polα) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-ACnp1 in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7+, which encodes a catalytic subunit of Polα. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Polα. These results suggest that Mcl1 and Polα are required for propagation of centromere chromatin structures during DNA replication.  相似文献   

15.
Brewer’s yeast appears to flocculate or disperse reversibly in response to the environmental conditions. The yeast and its solubilized cell surface substance show flocculation-dispersion changes according to pH, sugar concentration and flocculation inducing substances. Top fermentative yeasts do not show such a response to the surrounding conditions. Cell surfaces of bottom fermentative yeasts increase in hydrophobicity during a shift from fermentation starting conditions (dispersion of yeast) (high sugar concentration, pH 5.5) to ending conditions ( flocculation) (no sugar, pH 4.2), but this hydrophobicity increase was not seen in the case of top fermentative yeast cells. The contributions of hydrophobic interaction and ionic bonds to flocculence of the yeast were discussed.  相似文献   

16.
Although α-synuclein (α-syn) phosphorylation has been considered as a hallmark of sporadic and familial Parkinson disease (PD), little is known about the effect of PD-linked mutations on α-syn phosphorylation. In this study, we investigated the effects of the A30P, E46K, and A53T PD-linked mutations on α-syn phosphorylation at residues Ser-87 and Ser-129. Although the A30P and A53T mutants slightly affected Ser(P)-129 levels compared with WT α-syn, the E46K mutation significantly enhanced Ser-129 phosphorylation in yeast and mammalian cell lines. This effect was not due to the E46K mutant being a better kinase substrate nor due to alterations in endogenous kinase levels, but was mostly linked with enhanced nuclear and endoplasmic reticulum accumulation. Importantly, lentivirus-mediated overexpression in mice also showed enhanced Ser-129 phosphorylation of the E46K mutant compared to WT α-syn, thus providing in vivo validation of our findings. Altogether, our findings suggest that the different PD-linked mutations may contribute to PD pathogenesis via different mechanisms.  相似文献   

17.
Ester Formation by Alcohol Acetyltransferase from Brewers’ Yeast   总被引:2,自引:0,他引:2  
Alcohol acetyltransferase responsible for the formation of acetate esters during beer fermentation was found to be localized at the cell membrane of brewers’ yeast. This cell membrane-bound enzyme was purified 120-fold by solubilization with Triton X-100, gel filtration on a Sepharose 6B column and chromatography on a DEAE-Sephadex A-50 column. The enzyme was most active at 30°C at pH 7 ? 8. It was least active against C3 alcohol among C1 ? C6 alcohols, and slightly more active against straight-chain alcohols than against branched-chain alcohols with the same carbon number. The enzyme was strongly inhibited by unsaturated fatty acids, heavy metal ions and sulfhydryl reagents.  相似文献   

18.
In Candida tropicalis cells grown on n-alkanes (C10-C13), the levels of the activities of the enzymes related to fatty acid β—oxidation—acyl-CoA oxidase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-ketoacyl-CoA thiolase—were found to be higher than those in cells grown on glucose, indicating that these enzymes were induced by alkanes. The enzymes were first confirmed to be localized only in peroxisomes, while none of these enzymes nor acyl-CoA dehydrogenase, which is known to participate in the initial step of mitochondrial β-oxidation in mammalian cells, were detected in yeast mitochondria under the conditions employed.

The significance of the peroxisomal β-oxidation system in the metabolism of alkanes by the yeast was also discussed.  相似文献   

19.
Morgunov  I. G.  Kamzolova  S. V.  Sokolov  A. P.  Finogenova  T. V. 《Microbiology》2004,73(3):249-254
The NAD+-dependent isocitrate dehydrogenase of the organic acid–producing yeast Yarrowia lipolytica was isolated, purified, and partially characterized. The purification procedure included four steps: ammonium sulfate precipitation, acid precipitation, hydrophobic chromatography, and gel-filtration chromatography. The enzyme was purified 129-fold with a yield of 31% and had a specific activity of 22 U/mg protein. The molecular mass of the enzyme was found to be 412 kDa. The enzyme consists of eight identical subunits with a molecular mass of about 52 kDa. The K m for NAD+ is 136 M, and that for isocitrate is 581 M. The effect of some intermediates of the citric acid cycle and nucleotides on the enzyme activity was studied. The role of isocitrate dehydrogenase (NAD+) in the overproduction of citric and keto acids is discussed.  相似文献   

20.
By complementation of an alpha-isopropylmalate synthase-negative mutant of Saccharomyces cerevisiae (leu4 leu5), a plasmid was isolated that carried a structural gene for alpha-isopropylmalate synthase. Restriction mapping and subcloning showed that sequences sufficient for complementation of the leu4 leu5 strain were located within a 2.2-kilobase SalI-PvuII segment. Southern transfer hybridization indicated that the cloned DNA was derived intact from the yeast genome. The cloned gene was identified as LEU4 by integrative transformation that caused gene disruption at the LEU4 locus. When this transformation was performed with a LEU4fbr LEU5 strain, the resulting transformants had lost the 5',5',5'-trifluoro-D,L-leucine resistance of the recipient strain but were still Leu+. When it was performed with a LEU4 leu5 recipient, the resulting transformants were Leu-. The alpha-isopropylmalate synthase of a transformant that carried the LEU4 gene on a multicopy plasmid (in a leu5 background) was characterized biochemically. The transformant contained about 20 times as much alpha-isopropylmalate synthase as wild type. The enzyme was sensitive to inhibition by leucine and coenzyme A, was inactivated by antibody generated against alpha-isopropylmalate synthase purified from wild type and was largely confined to the mitochondria. The subunit molecular weight was 65,000-67,000. Limited proteolysis generated two fragments with molecular weights of about 45,000 and 23,000. Northern transfer hybridization showed that the transformant produced large amounts of LEU4-specific RNA with a length of about 2.1 kilonucleotides. The properties of the plasmid-encoded enzyme resemble those of a previously characterized alpha-isopropylmalate synthase that is predominant in wild-type cells. The existence in yeast of a second alpha-isopropylmalate synthase activity that depends on the presence of an intact LEU5 gene is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号