首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
COVID-19 vaccines have been approved for children of age five and older in many countries. However, there is an ongoing debate as to whether children should be vaccinated and at what priority. In this work, we use mathematical modeling and optimization to study how vaccine allocations to different age groups effect epidemic outcomes. In particular, we consider the effect of extending vaccination campaigns to include the vaccination of children. When vaccine availability is limited, we consider Pareto-optimal allocations with respect to competing measures of the number of infections and mortality and systematically study the trade-offs among them. In the scenarios considered, when some weight is given to the number of infections, we find that it is optimal to allocate vaccines to adolescents in the age group 10-19, even when they are assumed to be less susceptible than adults. We further find that age group 0-9 is included in the optimal allocation for sufficiently high values of the basic reproduction number.  相似文献   

2.
For the control of COVID-19, vaccination programmes provide a long-term solution. The amount of available vaccines is often limited, and thus it is crucial to determine the allocation strategy. While mathematical modelling approaches have been used to find an optimal distribution of vaccines, there is an excessively large number of possible allocation schemes to be simulated. Here, we propose an algorithm to find a near-optimal allocation scheme given an intervention objective such as minimization of new infections, hospitalizations, or deaths, where multiple vaccines are available. The proposed principle for allocating vaccines is to target subgroups with the largest reduction in the outcome of interest. We use an approximation method to reconstruct the age-specific transmission intensity (the next generation matrix), and express the expected impact of vaccinating each subgroup in terms of the observed incidence of infection and force of infection. The proposed approach is firstly evaluated with a simulated epidemic and then applied to the epidemiological data on COVID-19 in the Netherlands. Our results reveal how the optimal allocation depends on the objective of infection control. In the case of COVID-19, if we wish to minimize deaths, the optimal allocation strategy is not efficient for minimizing other outcomes, such as infections. In simulated epidemics, an allocation strategy optimized for an outcome outperforms other strategies such as the allocation from young to old, from old to young, and at random. Our simulations clarify that the current policy in the Netherlands (i.e., allocation from old to young) was concordant with the allocation scheme that minimizes deaths. The proposed method provides an optimal allocation scheme, given routine surveillance data that reflect ongoing transmissions. This approach to allocation is useful for providing plausible simulation scenarios for complex models, which give a more robust basis to determine intervention strategies.  相似文献   

3.
We analyze the effectiveness of the first six months of vaccination campaign against SARS-CoV-2 in Italy by using a computational epidemic model which takes into account demographic, mobility, vaccines data, as well as estimates of the introduction and spreading of the more transmissible Alpha variant. We consider six sub-national regions and study the effect of vaccines in terms of number of averted deaths, infections, and reduction in the Infection Fatality Rate (IFR) with respect to counterfactual scenarios with the actual non-pharmaceuticals interventions but no vaccine administration. Furthermore, we compare the effectiveness in counterfactual scenarios with different vaccines allocation strategies and vaccination rates. Our results show that, as of 2021/07/05, vaccines averted 29, 350 (IQR: [16, 454–42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564–6, 980, 070]) infections and a new pandemic wave in the country. During the same period, they achieved a −22.2% (IQR: [−31.4%; −13.9%]) IFR reduction. We show that a campaign that would have strictly prioritized age groups at higher risk of dying from COVID-19, besides frontline workers and the fragile population, would have implied additional benefits both in terms of avoided fatalities and reduction in the IFR. Strategies targeting the most active age groups would have prevented a higher number of infections but would have been associated with more deaths. Finally, we study the effects of different vaccination intake scenarios by rescaling the number of available doses in the time period under study to those administered in other countries of reference. The modeling framework can be applied to other countries to provide a mechanistic characterization of vaccination campaigns worldwide.  相似文献   

4.
Herpes zoster arises from reactivation of the varicella–zoster virus (VZV), causing varicella in children. As reactivation occurs when cell-mediated immunity (CMI) declines, and there is evidence that re-exposure to VZV boosts CMI, mass varicella immunization might increase the zoster burden, at least for some decades. Fear of this natural zoster boom is the main reason for the paralysis of varicella immunization in Europe. We apply optimal control to a realistically parametrized age-structured model for VZV transmission and reactivation to investigate whether feasible varicella immunization paths that are optimal in controlling both varicella and zoster exist. We analyse the optimality system numerically focusing on the role of the cost functional, of the relative zoster–varicella cost and of the planning horizon length. We show that optimal programmes will mostly be unfeasible for public health owing to their complex temporal profiles. This complexity is the consequence of the intrinsically antagonistic nature of varicella immunization programmes when aiming to control both varicella and zoster. However, we show that gradually increasing—hence feasible—vaccination schedules can perform better than routine programmes with constant vaccine uptake. Finally, we show the optimal profiles of feasible programmes targeting mitigation of the post-immunization natural zoster boom with priority.  相似文献   

5.
Background. Prophylactic vaccination has been suggested as a better strategy than antibiotics to control Helicobacter pylori infection. We evaluated the cost-effectiveness (CE) of H. pylori vaccine development and use in the United States and developing countries, using a method developed by the Institute of Medicine (IOM).
Methods. The IOM model includes costs of vaccine development, vaccination program, and averted medical treatments; morbidity and mortality prevented; expected efficacy and use; and proportion of disease that is vaccine-preventable. The model employs infant mortality equivalence (IME) to estimate disease burden; with IME, the societal cost of infection-related morbidity is expressed as equivalent to a specific rate of infant deaths. We tested model assumptions by univariate sensitivity analyses.
Results. In the United States, H. pylori vaccine would save 1,176 IME and would cost $58.71 million (1997 dollars) annually, yielding a CE ratio of $49,932 per IME; the health benefits would exceed all IOM-studied vaccines, even when efficacy dropped to 55%. H. pylori vaccine could be cost-saving if priced at less than $60 per course. In developing countries, H. pylori vaccine would rank unfavorably both in terms of health benefits (33,518 IME) and costs ($5,254 million). None of the changes in assumptions improved significantly the H. pylori vaccine's ranking relative to other IOM-studied vaccines.
Conclusions. Compared to other vaccines evaluated in the IOM study, H. pylori vaccine warrants public resource allocation for accelerated development and use in the United States but not for use in developing countries.  相似文献   

6.
Salmonella spp. in cattle contribute to bacterial foodborne disease for humans. Reduction of Salmonella prevalence in herds is important to prevent human Salmonella infections. Typical control measures are culling of infectious animals, vaccination, and improved hygiene management. Vaccines have been developed for controlling Salmonella transmission in dairy herds; however, these vaccines are imperfect and a variety of vaccine effects on susceptibility, infectiousness, Salmonella shedding level, and duration of infectious period were reported. To assess the potential impact of imperfect Salmonella vaccines on prevalence over time and the eradication criterion, we developed a deterministic compartmental model with both replacement (cohort) and lifetime (continuous) vaccination strategies, and applied it to a Salmonella Cerro infection in a dairy farm. To understand the uncertainty of prevalence and identify key model parameters, global parameter uncertainty and sensitivity analyses were performed. The results show that imperfect Salmonella vaccines reduce the prevalence of Salmonella Cerro. Among three vaccine effects that were being considered, decreasing the length of the infectious period is most effective in reducing the endemic prevalence. Analyses of contour lines of prevalence or the critical reproduction ratio illustrate that, reducing prevalence to a certain level or zero can be achieved by choosing vaccines that have either a single vaccine effect at relatively high effectiveness, or two or more vaccine effects at relatively low effectiveness. Parameter sensitivity analysis suggests that effective control measures through applying Salmonella vaccines should be adjusted at different stages of infection. In addition, lifetime (continuous) vaccination is more effective than replacement (cohort) vaccination. The potential application of the developed vaccination model to other Salmonella serotypes related to foodborne diseases was also discussed. The presented study may be used as a tool for guiding the development of Salmonella vaccines.  相似文献   

7.
BackgroundChina accounted for 87% (9.8 million/11.3 million) of all hand, foot, and mouth disease (HFMD) cases reported to WHO during 2010–2014. Enterovirus 71 (EV71) is responsible for most of the severe HFMD cases. Three EV71 vaccines recently demonstrated good efficacy in children aged 6–71 mo. Here we assessed the cost-effectiveness of routine pediatric EV71 vaccination in China.ConclusionsCompared to no vaccination, routine pediatric EV71 vaccination would be very cost-effective in China if the cost of immunization (including all logistical, procurement, and administration costs needed to confer 5 y of vaccine protection) is below US$12.0–US$18.3, depending on the choice of vaccine among the three candidates. Given that the annual number of births in China has been around 16 million in recent years, the annual costs for routine pediatric EV71 vaccination at this cost range should not exceed US$192–US$293 million. Our results can be used to determine the optimal vaccine when the prices of the three vaccines are known.  相似文献   

8.
For vaccine-preventable infections, immunization generally needs to be supplemented by palliative care of individuals missed by the vaccination. Costs and availability of vaccine doses and palliative care vary by disease and by region. In many situations, resources for delivery of palliative care are independent of resources required for vaccination; however we also need to consider the conservative scenario where there is some trade-off between efforts, which is of potential relevance for resource-poor settings. We formulate an SEIR model that includes those two control strategies - vaccination and palliative care. We consider their relative merit and optimal allocation in the context of a highly efficacious vaccine, and under the assumption that palliative care may reduce transmission. We investigate the utility of a range of mixed or pure strategies that can be implemented after an epidemic has started, and look for rule-of-thumb principles of how best to reduce the burden of disease during an acute outbreak over a spectrum of vaccine-preventable infections. Intuitively, we expect the best strategy to initially focus on vaccination, and enhanced palliative care after the infection has peaked, but a number of plausible realistic constraints for control result in important qualifications on the intervention strategy. The time in the epidemic when one should switch strategy depends sensitively on the relative cost of vaccine to palliative care, the available budget, and [Formula: see text]. Crucially, outbreak response vaccination may be more effective in managing low-[Formula: see text] diseases, while high [Formula: see text] scenarios enhance the importance of routine vaccination and case management.  相似文献   

9.
The SARS-CoV-2 pandemic is a major concern all over the world and, as vaccines became available at the end of 2020, optimal vaccination strategies were subjected to intense investigation. Considering their critical role in reducing disease burden, the increasing demand outpacing production, and that most currently approved vaccines follow a two-dose regimen, the cost-effectiveness of delaying the second dose to increment the coverage of the population receiving the first dose is often debated. Finding the best solution is complex due to the trade-off between vaccinating more people with lower level of protection and guaranteeing higher protection to a fewer number of individuals. Here we present a novel extended age-structured SEIR mathematical model that includes a two-dose vaccination schedule with a between-doses delay modelled through delay differential equations and linear optimization of vaccination rates. By maintaining the minimum stock of vaccines under a given production rate, we evaluate the dose interval that minimizes the number of deaths. We found that the best strategy depends on an interplay between the vaccine production rate and the relative efficacy of the first dose. In the scenario of low first-dose efficacy, it is always better to vaccinate the second dose as soon as possible, while for high first-dose efficacy, the best strategy of time window depends on the production rate and also on second-dose efficacy provided by each type of vaccine. We also found that the rate of spread of the infection does not affect significantly the thresholds of the best window, but is an important factor in the absolute number of total deaths. These conclusions point to the need to carefully take into account both vaccine characteristics and roll-out speed to optimize the outcome of vaccination strategies.  相似文献   

10.
Potency testing of most human and veterinary rabies vaccines requires vaccination of mice followed by a challenge test using an intracerebral injection of live rabies virus. NICEATM, ICCVAM, and their international partners organized a workshop to review the availability and validation status of alternative methods that might reduce, refine, or replace the use of animals for rabies vaccine potency testing, and to identify research and development efforts to further advance alternative methods. Workshop participants agreed that general anesthesia should be used for intracerebral virus injections and that humane endpoints should be used routinely as the basis for euthanizing animals when conducting the mouse rabies challenge test. Workshop participants recommended as a near-term priority replacement of the mouse challenge with a test validated to ensure potency, such as the mouse antibody serum neutralization test for adjuvanted veterinary rabies vaccines for which an international collaborative study was recently completed. The workshop recommended that an in vitro antigen quantification test should be a high priority for product-specific validation of human and non-adjuvanted veterinary rabies vaccines. Finally, workshop participants recommended greater international cooperation to expedite development, validation, regulatory acceptance, and implementation of alternative test methods for rabies vaccine potency testing.  相似文献   

11.
While campaigns of vaccination against SARS-CoV-2 are underway across the world, communities face the challenge of a fair and effective distribution of a limited supply of doses. Current vaccine allocation strategies are based on criteria such as age or risk. In the light of strong spatial heterogeneities in disease history and transmission, we explore spatial allocation strategies as a complement to existing approaches. Given the practical constraints and complex epidemiological dynamics, designing effective vaccination strategies at a country scale is an intricate task. We propose a novel optimal control framework to derive the best possible vaccine allocation for given disease transmission projections and constraints on vaccine supply and distribution logistics. As a proof-of-concept, we couple our framework with an existing spatially explicit compartmental COVID-19 model tailored to the Italian geographic and epidemiological context. We optimize the vaccine allocation on scenarios of unfolding disease transmission across the 107 provinces of Italy, from January to April 2021. For each scenario, the optimal solution significantly outperforms alternative strategies that prioritize provinces based on incidence, population distribution, or prevalence of susceptibles. Our results suggest that the complex interplay between the mobility network and the spatial heterogeneities implies highly non-trivial prioritization strategies for effective vaccination campaigns. Our work demonstrates the potential of optimal control for complex and heterogeneous epidemiological landscapes at country, and possibly global, scales.  相似文献   

12.
The development of a vaccine is still a priority in the fight against human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). Since conventional vaccine strategies have failed to provide a highly immunoprotective effect, approaches based on the rational design of vaccines composed of multiple HIV neutralizing epitopes have been proposed as potential vaccines. The aim of this study is to design a multiepitopic protein (Multi-HIV) carrying several neutralizing epitopes from both gp120 and gp41 as an effort to develop a new broad immunization scheme against HIV. This Multi-HIV was initially produced in a recombinant Escherichia coli strain either as a single protein or fused to glutathione-S-transferase. These proteins were purified by immobilized metal ion affinity chromatography and shown to be antigenic by positive reactivity in Western blot analyses using sera from HIV-positive patients for labeling. Since global immunization strategies are often limited by costs, platforms that require minimal processing are the priority in this field. Therefore, we explored the possibility of using transplastomic tobacco plants as an experimental model of a low cost plant-based vaccine against HIV. Transplastomic tobacco plants carrying the multi-HIV gene were developed and verified by PCR analyses. The expected Multi-HIV recombinant protein was localized in the chloroplast as proven first by confocal microscopy and subsequently by Western blot analysis. Tobacco-derived Multi-HIV protein was clearly able to evoke humoral responses in mice when orally administered without adjuvants. This report constitutes an effort to explore a new low-cost candidate that could have future implications on the development of affordable HIV vaccines.  相似文献   

13.
Tick-borne encephalitis virus (TBEV) is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV) in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8–16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to TBEV than C. aethiops.  相似文献   

14.
Furunculosis caused by infection with Aeromonas salmonicida subsp. salmonicida has been a known threat to aquaculture for more than a century. Efficient prophylactic approaches against this disease are essential for continued growth of salmonid aquaculture. Since the introduction of successful oil-adjuvanted vaccines in the early 1990''s, a number of studies have been published on the protective as well as adverse effects of these vaccines. Most studies focus on vaccination of salmon (Salmo salar). However, rainbow trout (Oncorhynchus mykiss) are also very susceptible to infection and are vaccinated accordingly. In this study we have examined the protection against infection with a Danish strain of A. salmonicida in both vaccinated and non-vaccinated rainbow trout. A commercial and an experimental auto-vaccine were tested. The protective effects of the vaccines were evaluated through an A. salmonicida challenge 18 weeks post vaccination. Both vaccines resulted in a significantly increased survival in the vaccinated fish during a 28 day challenge period relative to non-vaccinated fish (P = 0.01 and P = 0.001 for the commercial and experimental vaccine, respectively). Throughout the entire experiment, the presence of specific antibodies in plasma was monitored using ELISA. A significant increase in specific antibody levels was seen in fish vaccinated with both vaccines during the 18 weeks between vaccination and challenge. Within 3 days post challenge, a significant decrease in specific antibodies occurred in vaccinated fish. A positive correlation was found between mean levels of specific antibodies pre challenge and overall survival. This correlation, along with the observed depletion of antibodies during the initial phase of infection, suggests that specific antibodies play an essential role in vaccine mediated protection against A. salmonicida in rainbow trout.  相似文献   

15.
Despite over 50 years of population-wide vaccination, whooping cough incidence is on the rise. Although Bordetella pertussis is considered the main causative agent of whooping cough in humans, Bordetella parapertussis infections are not uncommon. The widely used acellular whooping cough vaccines (aP) are comprised solely of B. pertussis antigens that hold little or no efficacy against B. parapertussis. Here, we ask how aP vaccination affects competitive interactions between Bordetella species within co-infected rodent hosts and thus the aP-driven strength and direction of in-host selection. We show that aP vaccination helped clear B. pertussis but resulted in an approximately 40-fold increase in B. parapertussis lung colony-forming units (CFUs). Such vaccine-mediated facilitation of B. parapertussis did not arise as a result of competitive release; B. parapertussis CFUs were higher in aP-relative to sham-vaccinated hosts regardless of whether infections were single or mixed. Further, we show that aP vaccination impedes host immunity against B. parapertussis—measured as reduced lung inflammatory and neutrophil responses. Thus, we conclude that aP vaccination interferes with the optimal clearance of B. parapertussis and enhances the performance of this pathogen. Our data raise the possibility that widespread aP vaccination can create hosts more susceptible to B. parapertussis infection.  相似文献   

16.
Recent vaccine scares and sudden spikes in vaccine demand remind us that the effectiveness of mass vaccination programs is governed by the public perception of vaccination. Previous work has shown that the tendency of individuals to optimize self-interest can lead to vaccination levels that are suboptimal for a community. We use game theory to relate population-level demand for vaccines to decision-making by individuals with varied beliefs about the costs of infection and vaccination. In contrast to previous work proposing that universal vaccination is impossible in a game theoretic context, we show that optimal individual behavior can vary between universal vaccination and no vaccination, depending on the relative costs and benefits to individuals. By coupling game models and epidemic models, we demonstrate that the pursuit of self-interest often leads to stable dynamics but can lead to oscillations in vaccine uptake over time. The instability is exacerbated in populations that are more homogeneous with respect to their perceptions of vaccine and infection risks. This research illustrates the importance of applying temporal models to an inherently temporal situation, namely, the time evolution of vaccine coverage in an informed population with a voluntary vaccination policy.  相似文献   

17.
In the context of pandemic influenza, the prompt and effective implementation of control measures is of great concern for public health officials around the world. In particular, the role of vaccination should be considered as part of any pandemic preparedness plan. The timely production and efficient distribution of pandemic influenza vaccines are important factors to consider in mitigating the morbidity and mortality impact of an influenza pandemic, particularly for those individuals at highest risk of developing severe disease. In this paper, we use a mathematical model that incorporates age-structured transmission dynamics of influenza to evaluate optimal vaccination strategies in the epidemiological context of the Spring 2009 A (H1N1) pandemic in Mexico. We extend previous work on age-specific vaccination strategies to time-dependent optimal vaccination policies by solving an optimal control problem with the aim of minimizing the number of infected individuals over the course of a single pandemic wave. Optimal vaccination policies are computed and analyzed under different vaccination coverages (21%–77%) and different transmissibility levels (R0\mathcal{R}_{0} in the range of 1.8–3). The results suggest that the optimal vaccination can be achieved by allocating most vaccines to young adults (20–39 yr) followed by school age children (6–12 yr) when the vaccination coverage does not exceed 30%. For higher R0\mathcal{R}_{0} levels ($\mathcal{R}_{0}>=2.4$\mathcal{R}_{0}>=2.4), or a time delay in the implementation of vaccination (>90 days), a quick and substantial decrease in the pool of susceptibles would require the implementation of an intensive vaccination protocol within a shorter period of time. Our results indicate that optimal age-specific vaccination rates are significantly associated with R0\mathcal{R}_{0}, the amount of vaccines available and the timing of vaccination.  相似文献   

18.
The ESX systems from Mycobacterium tuberculosis are responsible for the secretion of highly immunogenic proteins of key importance for bacterial survival and growth. The two prototypic proteins, ESAT-6 (EsxA from ESX-1) and TB10.4 (EsxH from ESX-3) share a lot of characteristics regarding genome organization, size, antigenic properties, and vaccine potential but the two molecules clearly have very different roles in bacterial physiology. To further investigate the role of ESAT-6 and TB10.4 as preventive and post-exposure tuberculosis vaccines, we evaluated four different fusion-protein vaccines; H1, H4, H56 and H28, that differ only in these two components. We found that all of these vaccines give rise to protection in a conventional prophylactic vaccination model. In contrast, only the ESAT-6-containing vaccines resulted in significant protection against reactivation, when administered post-exposure. This difference in post-exposure activity did not correlate with a difference in gene expression during infection or a differential magnitude or quality of the vaccine-specific CD4 T cells induced by ESAT-6 versus TB10.4-containing vaccines. The post-exposure effect of the ESAT-6 based vaccines was found to be influenced by the infectious load at the time-point of vaccination and was abolished in chronically infected animals with high bacterial loads at the onset of vaccination. Our data demonstrate that there are specific requirements for the immune system to target an already established tuberculosis infection and that ESAT-6 has a unique potential in post-exposure vaccination strategies.  相似文献   

19.
Vaccinations are administered to patients to induce a protective immune response, resulting in immunological memory. Preventing infection through the use of vaccines is particularly important in immunocompromised and immunosuppressed individuals given their increased frequency and severity of infections relative to healthy individuals. Recent surveys show that the vaccination rate is still alarmingly low in patients with rheumatic disease. In this review we briefly discuss the different types of vaccines and then critically examine evidence related to vaccination efficacy in patients with autoimmune disease and the effects of immunomodulatory therapy, with an aim to provide guidance and optimize the administration of vaccines in such individuals.  相似文献   

20.
The study was conducted in Atlantic salmon to establish the initial and basic scientific documentation for an alternative batch potency test for salmon furuculosis vaccines. We assessed the antibody response development for Aeromonas salmonicida vaccines at different immunisation temperatures (3, 12 and 18 °C), by an enzyme-linked-immunosorbent assay (ELISA) 3, 6, 9 and 12 weeks post vaccination, and the correlation between antibody response and protection in cohabitation challenge experiments performed 6 and 12 weeks post vaccination. Fish immunised with a vaccine containing full antigen dose had a significant increase in antibody response after 252 day degrees and the measured values correlated well with protection after 500 day degrees. Fish vaccinated with a reduced antigen dose showed a significant lower antibody response than fish vaccinated with the full dose vaccine at all samplings, and showed a similar low relative percent survival (RPS) in the challenges. The results from this study indicate that an antibody ELISA can discriminate between vaccines of different antigen content and the method may replace challenge tests in batch potency testing of furunculosis vaccines in Atlantic salmon. An immunisation temperature of 12 °C and sampling after 6-9 weeks, seemed to be the most appropriate time for using antibody responses to confirm batch potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号