首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study was conducted with non-conventional ingredients to test their efficacy as fishmeal (FM) replacers in the diet of fringe- lipped carp. Labeo fimbriatus first feeding larvae and fry were reared for 30 and 60 days in indoor, 50 L, aerated, circular plastic tanks at 100 and 30 numbers tank−1, respectively. In the first feeding larvae to fry rearing experiment (Exp. 1), the fish were fed with either of the following isonitrogenous and isocaloric diets – live plankton, FM diet, green bottle fly (Lucilia sericata) larvae meal (GBFLM) diet and silkworm pupa (SWP) diet. The fry to fingerling rearing (Exp. 2), was also conducted using the same diets described above except live plankton. All compounded diets were formulated to contain 40% crude protein for the experiment 1 and 35% for experiment 2 and were fed ad libitum. Triplicate tanks were maintained for each treatment in both the experiments. In Exp. 1, the mean final weight of fry was higher with plankton and FM diets, while no difference (p > .05) was observed between FM and GBFLM diets. Weight of fish fed SWP diets was not statistically different from those fed GBFLM diet. No difference (p > .05) in final length, survival and condition factor was recorded. Analysis of digestive enzyme activity of whole fish revealed lower (p < .05) activity of amylase in fish fed plankton. In Exp. 2, no difference (p > .05) was observed between the different diet groups in terms of mean final weight, length, survival and condition factor. Analysis of digestive enzyme activity of whole fish revealed no difference (p > .05) in the activity of digestive enzymes between the treatments except a lower (p < .05) activity of trypsin in FM diet and lipase in FM and GBFLM diets. Since the survival and condition factors of animals is the most important aspect during nursery rearing, similar (p > .05) values recorded in different treatments indicate the possibility of incorporation of these non-conventional protein sources in the diet of L. fimbriatus during first feeding larvae to fry and fry to fingerling rearing.  相似文献   

2.
Dietary nucleotides have been shown to benefit many physiological and nutritional functions in higher vertebrates and fish. Therefore, a 6-week feeding trial was conducted to evaluate the effects of graded levels of a commercial nucleotide product on growth performance, immune responses and intestinal morphology of juvenile red drum (initial average weight of 7.1 g). The basal diet was formulated to contain 40% protein, 10% lipid and a digestible energy level of 3.5 kcal g?1. Two levels of nucleotide (Ascogen P®, 0.5% and 1% of diet) were added to the basal diet with menhaden fishmeal and menhaden oil adjusted to provide isonitrogenous and isolipidic diets. Nucleotide supplementation tended to improve weight gain and survival of red drum, but not at a significant level. Neutrophil oxidative radical anion production and serum lysozyme activity tended to be higher for fish fed diets supplemented with nucleotide, while extracellular superoxide anion production of head kidney macrophages from fish fed diets with 1% nucleotide was significantly (P < 0.05) increased, although no significant differences were observed between fish fed 0.5% nucleotide diet and the basal diet.Nucleotide supplementation significantly (P < 0.05) increased fold height in the proximal intestine, and enterocyte height in the pyloric caeca, proximal and distal enteric sections. A significantly (P < 0.05) higher microvilli height was observed in all evaluated enteric sections of fish fed with diets supplemented with nucleotides. It is therefore possible to use dietary nucleotides supplementation to significantly enhance the intestinal structure of red drum. Likewise, nucleotides in the diet may improve some components of the non-specific immune response of this sciaenid fish.  相似文献   

3.
The study assesses the effects of dietary mannan oligosaccharides (MOS) in European sea bass (Dicentrarchus labrax) posterior intestinal lipid class composition and its possible relation to the potential prostaglandins production and Gut Associated Lymphoid Tissue (GALT) stimulation.Fish were fed 4 g kg?1 MOS (Bio-Mos® Aquagrade, Alltech, Inc., USA) for eight weeks. Fish fed MOS presented higher (P ≤ 0.05) weight gain, total length, and specific and relative growth rates than fish fed the control diet. Stimulated posterior gut of fish fed MOS showed higher (P ≤ 0.05) prostaglandins production than fish fed the control diet. Lipid class analyses of posterior gut revealed a reduction (P ≤ 0.05) in the neutral lipid fraction in fish fed MOS compared to fish fed the control diet, particularly due to a reduction (P ≤ 0.05) in triacylglycerols content. The polar lipid fraction increased (P ≤ 0.05) in fish fed MOS compared to fish fed the control diet, mainly due to an increase (P ≤ 0.05) in phosphatidylethanolamine and phosphatidylcoline contents.Light microscopy of posterior gut revealed increased number or goblet cells as well as higher level of infiltrated eosinophilic granulocytes for fish fed MOS. Transmission electron microscopy qualitative observations revealed a better preserved cytoarchitecture of the intestinal epithelial barrier in the posterior gut of fish fed MOS. Posterior gut of fish fed MOS presented more densely packed non-damaged enterocytes, better preserved tight junctions structure, healthier and more organized microvilli, and a higher presence of infiltrated lymphocytes and granulocytes compared fish fed the control diet.The present study indicates that dietary MOS enhances European sea bass posterior gut epithelial defense by increasing membrane polar lipids content in relation to a stimulation of the eicosanoid cascade and GALT, promoting posterior gut health status.  相似文献   

4.
The ingestion of a valine (Val)-deficient diet results in a significant reduction of food intake and body weight within 24 h, and this phenomenon continues throughout the period over which such a diet is supplied. Both microarray and real-time PCR analyses revealed that the expression of somatostatin mRNA was increased in the hypothalamus in anorectic mice that received a Val-deficient diet. On the other hand, when somatostatin was administered intracerebroventricularly to intact animals that were fed a control diet, their 24-h food intake decreased significantly. In addition, Val-deficient but not pair-fed mice or those fasted for 24 h showed a less than 0.5-fold decrease in the hypothalamic mRNA expression levels of Crym, Foxg1, Itpka and two unknown EST clone genes and a more than twofold increase in those of Slc6a3, Bdh1, Ptgr2 and one unknown EST clone gene. These results suggest that hypothalamic somatostatin and genes responsive to Val deficiency may be involved in the central mechanism of anorexia induced by a Val-deficient diet.  相似文献   

5.
A feeding trial was conducted to study the effect of partial replacement of dietary monocalcium phosphate (MCP) with phytase on growth performance, feed utilization and phosphorus discharge in black sea bream, Acanthopagrus schlegelii. In the feeding trial, the control diet (designated as P1.5) was prepared with 1.5% MCP but without phytase, and the three other diets (designated as PP1.0, PP0.5 and PP0, respectively) were supplemented with 1.0%, 0.5% and 0% MCP, respectively, along with 200 mg (400 U) phytase/kg diet in each. Each diet was tested in triplicate tanks and fish were fed twice daily to satiation. After an 8‐week feeding trial in indoor flow‐through cylindrical fibreglass tanks (25 fish per tank, initial body weight: 11.5 ± 0.12 g), fish fed with PP1.0 and PP0.5 had no significant change in weight gain (WG), specific growth rate (SGR), protein efficiency rate (PER) or feed conversion ratio (FCR) compared to the control (p > .05), whereas fish fed with PP0 showed a significantly lower growth performance in the above parameters (p < .05). The addition of phytase did not affect the body composition or muscle composition. The apparent digestibility coefficients (ADCs) of crude protein and phosphorus increased when fish were fed diets in which MCP was replaced by phytase. Phosphorus discharge was also significantly reduced in fish fed diets in which MCP was replaced by phytase (10.2 ± 0.50 to 8.01 ± 0.47 g/kg weight gain). The present study suggests that dietary MCP can be reduced when phytase is added to the black sea bream diet, with a maximum MCP reduction level of up to 1% when phytase is supplemented at 200 mg (400 U)/kg diet. Thus, phytase in the diet of black sea bream is economically and ecologically beneficial.  相似文献   

6.
The present study investigated the effects of sodium butyrate (SB) on the growth performance, histomorphology, immune response, and stress related markers of Nile tilapia subjected to heat stress. SB was incorporated at 0, 0.5, 1, 1.5, and 2 g per kg diet and fed to fish for 8 weeks. The obtained results revealed significantly improved growth performance with a decreased feed conversion ratio in the fish fed SB (P < 0.05). In the anterior, middle, and distal parts of the intestine, villus length and width and internal villi distance as well as the number of goblet cells were increased in the fish fed SB (P < 0.05). The blood total protein, hemoglobin, and white and red blood cell counts showed a significant quadratic influence (P < 0.05). The survival rate for Nile tilapia exposed to heat stress for 48 h revealed that the SB fed groups had noticeably higher survival rates. Dietary SB significantly increased the phagocytic index and lysozyme and phagocytic activities both before and after heat stress (P < 0.05). After heat stress, blood glucose decreased significantly with SB feeding at 0.5, 1, or 1.5 g per kg diet, while cortisol was reduced in fish fed 1.5 or 2 g per kg diet (P < 0.05). Additionally, in fish fed SB, superoxide dismutase (SOD), catalase, and glutathione peroxidase activities were significantly increased both before and after heat stress, while malondialdehyde was decreased by SB feeding (P < 0.05). Liver heat shock protein 70 and SOD gene expression were significantly upregulated in fish fed on SB at 1 g per kg diet (P < 0.05). Thus, supplementation with SB at 1–2 g per kg diet can be used effectively in tilapia diets for improving growth, feed efficiency, and immune response as well as for tolerance to heat stress.  相似文献   

7.
The use of green algae ulva meal (UM) (Ulva rigida) was evaluated as a replacement for soybean meal in a practical diet formulated to contain 28% crude protein, 7.50% lipid and 15 kJ gross energy g?1. Soybean meal was replaced by 0%, 10%, 20% and 30% of UM (diets U0, U1, U2 and U3, respectively). The feeding experiment was carried out in an open circulation system. Each diet treatment was applied to triplicate groups of 30 fish (21.37 ± 0.193 g average wet weight) per tank (400 L) arranged in a completely randomized design. The fish were hand fed to satiation four times daily between 07.00 and 18.00 hours for 75 days. There were no significant differences (P > 0.05) in growth performance among fish fed with diets U0, U1 and U2. However, fish fed diet U3 had significantly lower growth (P < 0.05) than those fed diets U0, U1 and U2. Fish fed the control diet (U0) and diets including 10% and 20% UM had significantly (P < 0.05) better daily weight gain, relative growth weight, specific growth weight and protein efficiencies ratio than those fed with diet U3. Feed conversion ratio increased with increasing UM content, but only the value found in fish fed with diet U3 differed significantly (P < 0.05) from all other treatments. Survival rates ranged between 91.11% and 93.33%. No feed‐related mortality was observed during the entire experimental period. Apparent protein digestibility (APD) of diets ranged from 87.06 to 69.91% and was lowest for fish fed with diet U3. In general, APD values decreased with increasing inclusion levels of UM, explained by the increase of anti‐nutritional factors and high non‐digestible fibre content. Compared to the control diet (U0), fish fed diets containing high levels of UM had lower levels of carcass lipid and higher levels of carcass moisture. Results show that this product can be included by up to 20% in practical male Nile tilapia diets with no detrimental effects.  相似文献   

8.
The effect of two feeding rates (0.5 and 1.5% of total body weight) was assessed on the growth of pectoral fin spines of captive juvenile great sturgeon, Huso huso, after second year of life. The fish received Oxytetracycline (OTC) twice in the first and second years of their lives under basic diet. During the 5‐month experimental period, juveniles (mean 1,187.4 g, 0.1 standard deviation [SD]), n = 50) were reared with two feeding rates under similar conditions in 10 fiberglass tanks (1.5 m3). The fish were fed manually with a commercial diet twice a day (35% Biomar, Nersac, France) throughout the experiment. The OTC marks were distinguished in all pectoral fin spine sections under ultraviolet light. The means of the first and second annular radii were 806.6 µm (27.2 SD) and 2,246.5 µm (50.2 SD), respectively. The marginal increment analysis beyond the second OTC mark revealed a significantly smaller marginal increment for low feeding rate treatment (143.9, 11.2 SD) as compared to the high feeding rate one (269.0, 14.6 SD). The results indicate the slower growth rate in the fish fed the low feeding treatments seen in the pectoral fin spine formation, which can be used as an indicator of recent feeding history in sturgeon juveniles. The best daily feeding rate for great sturgeon of 2,460 g was determined to be 1.5% body weight/day in this study.  相似文献   

9.
A factorial experiment was designed to examine the effect on compensatory growth (CG) of Nile tilapia Oreochromis niloticus fed diets containing different protein and lipid levels under normal and temporally restricted feeding regimes. Four diets were formulated to contain either 30% or 36% crude protein, and 5% or 11% crude lipid. Triplicate replicates of each treatment were assigned to 24 150‐L tanks (20 fish/tank density). Fish (mean initial weight ± SD = 8.79 ± 0.34 g) were then fed either the normal feeding regime (thrice daily to apparent satiation) or the restricted regime (1 day feed deprivation followed by 3 days of feeding to apparent satiation) over a 44‐days study period. Fish receiving a diet under the restricted regime achieved weight gains (WG) comparable to fish consuming the diet containing 30% protein and 5% lipids under the normal feeding regime. Fish maintained on the restricted feeding regime exhibited reduced feed intake (FI), WG, feed efficiency ratio (FE), protein efficiency rate (PER) and hepatosomatic index versus fish on the normal feeding regime, except WG in fish fed the diet with 30% protein and 5% lipids. However, the resultant FI (85%~94%) was higher than the excepted 75% intake when fish were subjected to the restricted regime. Feeding 11% lipid diets led to improved FI, WG, FE, and PER compared to feeding the 5% lipid diets. Increased FI, WG, and FE, but reduced PER were observed in fish fed with 36% protein versus fish fed 30% protein. Fish receiving the 36% protein diets had lower whole‐body moisture and ash contents, but elevated whole‐body protein and lipid contents compared to those receiving the 30% protein diets. Whole‐body moisture contents were lower, but whole‐body protein, lipid and ash contents were higher in fish fed 11% lipid diets than in fish fed 5% lipid diets. There was an increase in whole‐body moisture content, but a decrease in protein and lipid content in response to the restricted feeding regime. Ash content was not affected by the feeding regime. The present study shows that Nile tilapia fed diets subjected to a restricted feeding regime exhibited growth comparable to those fed the diet at 30% protein and 5% lipid levels under a normal feeding regime. This positive effect was more pronounced in diets at a high protein level or in a combination of high protein and lipid levels.  相似文献   

10.

This study investigates the effects of dietary Aeromonas veronii V03 supplementation on growth performances, innate immunity, and expression of immune-related genes in lymphoid organs of Cyprinus carpio and resistance to Aeromonas hydrophila infection. Fish were fed for 4 weeks with basal diet (BD; without probiotic), and experiment diet containing different doses of A. veronii V03 at 3.2 × 107 (DI) and 3.5 × 109 (DII) CFU g−1 of diet. At the end of the probiotic feeding trial, fish were challenged with A. hydrophila, and the percentage of survival rates was recorded over 7 days. Results revealed that fish fed with A. veronii V03 demonstrated a significant improvement in growth and enhancement of innate immunity, including respiratory burst, myeloperoxidase, and lysozyme activities, and total immunoglobulin level compared with BD fed to fish. Relatively, expression of cytokines (MyD88, IL-1β1, IL-8, and IL-10) and c- and g-type lysozymes were significantly up- and downregulated in lymphoid organs of fish. Moreover, dietary supplementation of A. veronii V03 exhibited significantly (p < 0.001) higher survival rates of DI (90%) and DII (96.66%) compared with BD (53.33%) fed fish against A. hydrophila infection. These findings help to understand the effects of probiotic A. veronii V03 administrated feed influences on growth and ailment resistance to A. hydrophila infection by regulating innate and systemic immunity in common carp fish.

  相似文献   

11.
A 10-week feeding trial was conducted to study the effect of feeding level and dietary lysine concentration on growth, protein and lysine retention, and body composition in juvenile turbot. Maintenance requirement for lysine and the efficiency of lysine utilisation were determined as well. Two experimental diets were formulated based on fishmeal or wheat gluten as main protein sources, containing 6.4 g (Diet A, control) and 4.5 g lysine per 100 g CP (Diet B), respectively. Diets were fed once daily at six feeding levels (per day 0.3%, 0.6%, 0.9%, 1.2%, and 1.5% of body weight [BW] and ad libitum) to a total of 432 fish of 48 g initial BW. No differences in the growth parameters were observed between diets at the same feeding level, except a lower feed to gain ratio (p < 0.05) at the highest feeding level at Diet B. Whole-body composition was not affected by diet, whereas muscle protein concentration was significantly lower for fish fed Diet B. Amino acid concentration in whole-body protein was affected by dietary treatment and fish fed Diet B showed lower concentrations of all essential amino acids. In fish muscle protein, lysine, methionine, leucine, isoleucine, and valine concentrations were significantly lower in Diet B. Efficiency of lysine utilisation for growth (klys) was determined by linear regression analysis and amounted for 0.69 for Diet B. The maintenance lysine requirement defined at zero lysine retention was 6.5 mg · kg?0.8 · d?1. Lysine intakes at zero protein retention were 13.0 mg and 12.9 mg · kg?0.8 · d?1 for Diet A and B, respectively. Growth and nutrient retention were similar for both diets and, therefore, a lysine deficiency in Diet B did not occur. In conclusion, a proportion of 330 g wheat gluten per kg feed did not influence growth performance and maintenance requirement for lysine in juvenile turbot. However, the effect of diet composition on the amino acid profile of body protein might be relevant for the derivation of the amino acid requirement from protein retention.  相似文献   

12.
Mole (MSR) and fractional (FSR) synthesis rates of proteins during C2C12 myoblast differentiation are investigated. Myoblast cultures supplemented with D2O during 0–24 h or 72–96 h of differentiation are analyzed by LC‐MS/MS to calculate protein FSR and MSR after samples are spiked with yeast alcohol dehydrogenase (ADH1). Profiling of 153 proteins detected 70 significant (p ≤ 0.05, FDR ≤ 1%) differences in abundance between cell states. Early differentiation is enriched by clusters of ribosomal and heat shock proteins, whereas later differentiation is associated with actin filament binding. The median (first–third quartile) FSR (%/h) during early differentiation 4.1 (2.7–5.3) is approximately twofold greater than later differentiation 1.7 (1.0–2.2), equating to MSR of 0.64 (0.38–1.2) and 0.28 (0.1–0.5) fmol h?1 µg?1 total protein, respectively. MSR corresponds more closely with abundance data and highlights proteins associated with glycolytic processes and intermediate filament protein binding that are not evident among FSR data. Similarly, MSR during early differentiation accounts for 78% of the variation in protein abundance during later differentiation, whereas FSR accounts for 4%. Conclusively, the interpretation of protein synthesis data differs when reported in mole or fractional terms, which has consequences when studying the allocation of cellular resources.  相似文献   

13.
The percent weight gain (PWG) and feed efficiency (FE) of Epinephelus coioides were calculated, and the lactobacilli and total microbiota in the posterior intestines, and non-specific immune parameters of grouper, and its susceptibility to Streptococcus sp. and an iridovirus were determined when the fish were fed diets containing Lactobacillus plantarum at 0 (control), 106, 108, or 1010 colony-forming units (cfu) kg?1 for 4 weeks. Results showed that grouper fed a diet containing L. plantarum at the levels of 106, 108, and 1010 cfu kg?1 had significantly increased PGW and FE especially at 108 cfu kg?1 group which were 404.6% and 1.26, respectively. L. plantarum significantly increased in the fish posterior intestines during the L. plantarum feeding period, but decreased rapidly from the intestine within 1 week after changing to the control diet (without L. plantarum). Fish fed a diet containing L. plantarum at 106 and 108 cfu kg?1 had significantly higher survival rates than those fed the control diet after challenge with Streptococcus sp., as well as those fed 108 cfu kg?1 after challenge with an iridovirus, causing increases in the survival rates of 23.3%, 20.0%, and 36.7%, respectively, compared to the control group. The alternative complement activity (ACH50) level of fish fed diets containing L. plantarum after 4 weeks was significantly higher than that of fish fed the control diet, and that of the 108 cfu kg?1 group was significantly higher than those of the 106 and 1010 cfu kg?1 groups, which increased by 83.4% compared to the control group. The lysozyme activity and glutathione peroxidase (GPx) activity of fish fed the L. plantarum-containing diets at 108 and 1010 cfu kg?1 significantly increased compared to those fed the 106 cfu kg?1 L. plantarum diet and control diet, and had increased by 76.3% and 136.6%, and 57.1% and 113.3%, respectively, compared to those fed the control diet. The phagocytic activity (PA), phagocytic index (PI), and respiratory bursts of head kidney leucocytes of fish fed 106, 108, and 1010 cfu kg?1 L. plantarum diets were significantly higher than those of fish fed the control diet after 4 weeks of feeding, and increased 2.2-, 2.2-, and 2.3-fold; 1.8-, 1.8-, and 2.0-fold; and 1.4-, 1.4-, and 1.4-fold, respectively, compared to the control group. We therefore recommend dietary L. plantarum administration at 108 cfu kg?1 to promote growth and enhance immunity and resistance against Streptococcus sp. and an iridovirus of E. coioides.  相似文献   

14.
《Bioresource technology》2000,71(2):97-101
A feeding trial was conducted for 56 days to study the effect of replacement of fish meal by dried fish and chicken viscera, and a combination of oil cakes, in the diet of Clarias batrachus juveniles. The nutritional values of these by-products were studied through a digestibility experiment. No significant difference in nutrient digestibility was observed in different diets. Even 19.59% lipid in the diet of catfish did not affect the nutrient digestibility. Both amylolytic and proteolytic enzymes in the intestine of juveniles were studied. A decreased protease activity due to replacement of animal protein by plant protein and a decreased (P < 0.01) aspartate aminotransferase (ASAT) activity could be observed after inclusion of 22% of dried fish viscera in the diet of the catfish. Though body lipid content increased in fish fed a high level of lipid, fat-free body composition did not vary among the fish fed on different diets.  相似文献   

15.
The ocean is a nutritionally heterogeneous environment. For feeding larval forms, food variability has significant consequences for growth and later recruitment success. In this study, the physiological and biochemical responses to a range of different food concentrations (unfed, 4, 20, and 40 algal cells μl− 1) were examined in larvae of the asteroid, Asterina miniata. Measurements of growth, protein synthesis rates, and the energetic cost of protein synthesis were made. Under conditions of rapid growth, protein comprised a larger percent (66%) of a larva's organic biomass compared to similar-aged, slower-growing larvae (26%). Larvae fed at the highest food concentration tested (40 algal cells μl− 1) had a protein depositional efficiency of 80% (± 16%), a value 3-fold higher than larvae fed 20 algal cells μl− 1 (28% ± 11%). Also, faster-growing larvae required 3-fold less energy per unit mass of protein growth. Larvae fed 40 algal cells μl− 1 deposited protein at a respiratory cost of 65 ± 11 pmol O2 h− 1 (μg protein)− 1; larvae fed 20 algal cells μl− 1 had a cost of 192 ± 47 pmol O2 h− 1 (μg protein)− 1. While there were differences in the cost to deposit protein (i.e., protein growth, the balance of synthesis and degradation), there were no differences in the energetic cost of protein synthesis for all food concentrations tested. The energetic cost of protein synthesis was fixed at 13.8 (± 0.92) Joules (mg protein synthesized)− 1 and was independent of developmental stage, growth rates, and large changes (58-fold) in protein synthesis rates. A major conclusion from this study is that larvae grown in high-food environments not only grew faster, but did so for considerably less energy. Defining the complex relationships of food availability and metabolic efficiency will provide more accurate predictions of larval growth under variable food conditions in the ocean.  相似文献   

16.
The role of dietary polyunsaturated fatty acids (PUFAs) on the fatty acid composition of juvenile red drum Sciaenops ocellatus was investigated. Individuals (n = 435) were fed three natural diets (Gulf menhaden Brevoortia patronus, brown shrimp Farfantapenaeus aztecus and Atlantic brief squid Lolliguncula brevis) that had significantly different proximate composition, energy density and PUFA compositions for 40 days. Diets were characterized as containing: high lipid, high protein, high energy and low PUFA (fish‐based), low lipid, low protein, low energy, moderate PUFA (shrimp‐based), and low lipid, high protein, moderate energy and high PUFA levels (squid‐based), respectively. Specimens were collected at days 0, 5, 10, 20 and 40 to evaluate rate of dietary fatty acid composition in tissues. Two‐source mixing models were used to calculate dietary fatty acid accumulation in consumer tissues. Results indicated that juvenile red drum incorporated an average of 35% dietary PUFAs after 5 days. Although relative biomass and dietary proximate composition had an effect upon the dietary fatty acid contribution, red drum averaged 91% incorporation of the five most prevalent PUFAs [18 : 2 (n ? 6), 20 : 4 (n ? 6), 20 : 5 (n ? 3), 22 : 5 (n ? 3) and 22 : 6 (n ? 3)] across all diets after 40 days. Growth varied as a function of diet and rates were higher for individuals fed the squid diet than those fed shrimp or fish diets primarily due to increased levels of protein and PUFAs [including 22 : 6 (n ? 3); 25·8%] in the diet. Red drum fed squid exhibited the greatest increase in average dietary fatty acid contribution by day 5, a trend that continued for the duration of the experiment. Since PUFA composition in red drum was significantly influenced by diet in as few as 5 days and almost completely incorporated into body tissues after 40 days, results from this study support the premise that fatty acids (especially PUFAs) are promising dietary indicators and may be useful for future studies examining trophic relationships of estuarine and marine fishes.  相似文献   

17.
A comprehensive understanding of animal growth requires adequate knowledge of protein synthesis (PS), which in fish, has traditionally been determined by the flooding dose method. However, this procedure is limited to short-term assessments and may not accurately describe fish growth over extended periods of time. Since deuterium oxide (2H2O) has been used to non-invasively quantify PS in mammals over short- and long-term periods, we aimed at determining if 2H2O could also be used to measure PS in channel catfish. Fish were stocked in a 40-L aquarium with ~ 4% 2H2O and sampled at 4, 8 and 24 h (n = 6 at each time period) to determine 2H-labeling of body water (plasma), as well as protein-free and protein-bound 2H-labeled alanine. The labeling of body water reflected that of aquarium water and the labeling of protein-free alanine remained constant over 24 h and was ~ 3.8 times greater than that of body water. By measuring 2H-labeled alanine incorporation after 24 h of 2H2O exposure we were able to calculate a rate of PS: 0.04 ± 0.01% h− 1. These results demonstrate that PS in fish can be effectively measured using 2H2O and, because this method yields integrative measures of PS, is relatively inexpensive and accounts for perturbations such as feeding, it is a novel and practical assessment option.  相似文献   

18.
以不同维生素K水平(0.13、2.15、3.25、6.40、12、17.20和23.20 mg/kg饲料)的7种精制饲料喂养初始体重约为(2.17±0.01) g的异育银鲫(Carassius auratus gibelio)10周, 每个处理3个重复, 研究异育银鲫对维生素K的需求量。结果显示: 饲料中维生素K的添加可以明显降低摄食率, 饲料中维生素K含量为2.15 mg/kg时, 摄食率出现最大值, 之后显著下降(P<0.05), 在12 mg/kg时达到最低值。特定生长率随着维生素K的添加表现出升高的趋势, 饲料中维生素K含量为12 mg/kg时, 出现最大值, 但是差异不显著(P>0.05)。饲料中维生素K的含量从0.13 mg/kg升至3.25 mg/kg时, 饲料效率显著升高(P<0.05), 随着饲料中维生素K的进一步添加, 趋于稳定(P>0.05), 在12 mg/kg时达到最大值, 并且与特定生长率呈正相关关系(SGR=0.01 FE+0.95, R2=0.95)。血液红细胞数目随着饲料维生素K含量的增加先显著升高(P<0.05), 在6.40 mg/kg时达到最大值, 之后趋于稳定(P>0.05)。血红蛋白含量、血球容积比、血清钙含量与血液中红细胞数目表现出相似的趋势, 均在不添加维生素K组出现最低值, 但是差异不显著(P>0.05)。肝体比、肥满度及鱼体生化组成均不受饲料维生素K水平的影响(P>0.05)。分别对饲料效率、红细胞数目进行折线回归得出异育银鲫幼鱼对维生素K的最适需求量为3.73—6.72 mg/kg饲料。  相似文献   

19.
Differences in producing performance and organoleptic meat characteristics among pig genotypes and/or producing types are widely known. These parameters are also subjected to the animal’s development, feeding and management. Detailed knowledge of the effects of production phase (PP), pig producing type (PT), dietary protein availability and their interactions on nutrient digestibility, nitrogen balance and protein metabolism is essential information to improve precision feeding techniques. The experiment was a 2 (PP) × 2 (PT) × 2 (diet) factorial design conducted with 32 male pigs, 16 entire F2 pigs progeny of Pietrain sires and Duroc × Landrace dams, and 16 castrated purebred Durocs belonging to two production phases (growing: 29.5 ± 3.19 v. fattening: 88.6 ± 6.26 kg BW), and assigned to one of two dietary CP levels, either standard (SP: 17% in growing and 15% in fattening) or low (LP: 15% in growing and 13% in fattening). Viscera and muscle fractional protein synthesis rates (FSRs; %/day) were conducted through a single infusion of 15% L-[ring-2H5]-phenylalanine, with subsequent blood sampling from 12 to 40 min, and sample collection of liver, duodenum, biceps femoris and longissimus dorsi skeletal muscles after sacrifice. Fattening animals acquired a greater feed ingestion capacity, average daily gain (P < 0.01) and apparent ileal digestibility, whereas growing pigs showed higher FSRs in both viscera (duodenum and liver) and in longissimus dorsi. F2 pigs showed higher average daily gain, nitrogen retention rates and FSR in liver and longissimus dorsi (P < 0.01). Nevertheless, apparent ileal digestibility in all essential amino acids was lower in F2 compared with Duroc pigs (P < 0.05). Protein metabolism was barely influenced by dietary CP content, although animals fed LP registered the lowest apparent ileal digestibility for CP and also for most of the essential amino acids compared with SP-fed pigs. This information may reveal differences in amino acid requirements between both PTs, with Duroc pigs receiving excess of dietary amino acids.  相似文献   

20.
A 60‐day feeding trial was conducted to evaluate the effects of dietary palm oil supplements on growth performances, hematology, liver anti‐oxidative enzymes and air exposure resistance of Japanese flounder, Paralichthys olivaceus (initial weights 2.56 ± 0.01 g). Five diets were tested wherein the dietary fish oil was replaced by palm oil at: 0% (Control), 20% (20%), 40% (40%), 50% (50%) and 60% (60%). After the feeding trial, the 20% dietary palm oil was shown to provide similar growth rates and feed efficiency with no negative effects compared to the control group (P > 0.05). Significantly lower growth rates and feed utilization were found in fish fed higher than 40% palm oil in the diet (P < 0.05). Except for total serum protein, the blood parameters, liver anti‐oxidative enzymes, stress resistance and proximate compositions of Japanese flounder were not altered, even with dietary palm oil up to 60% of the lipid source (P > 0.05). According to the present results, palm oil is a valuable lipid source substitute in Japanese flounder diets; around 20–40% fish oil can be replaced with palm oil with no negative effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号