首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HB-19 pseudopeptide 5[Kpsi(CH(2)N)PR]-TASP, psi(CH(2)N) for reduced peptide bond, is a specific inhibitor of human immunodeficiency virus (HIV) infection in different CD4(+) cell lines and in primary T-lymphocytes and macrophages. Here, by using an experimental CD4(+) cell model to monitor HIV entry and infection, we demonstrate that HB-19 binds the cell surface and inhibits attachment of HIV particles to permissive cells. At concentrations that inhibit HIV attachment, HB-19 binds cells irreversibly, becomes complexed with the cell-surface-expressed nucleolin, and eventually results in its degradation. Accordingly, by confocal immunofluorescence microscopy, we demonstrate the drastic reduction of the cell-surface-expressed nucleolin following treatment of cells with HB-19. HIV particles can prevent the binding of HB-19 to cells and inhibit complex formation with nucleolin. Such a competition between viral particles and HB-19 is consistent with the implication of nucleolin in the process of HIV attachment to target cells. We show that another inhibitor of HIV infection, the fibroblast growth factor-2 (FGF-2) that uses cell-surface-expressed heparan sulfate proteoglycans as low affinity receptors, binds cells and blocks attachment of HIV to permissive cells. FGF-2 does not prevent the binding of HB-19 to cells and to nucleolin, and similarly HB-19 has no apparent effect on the binding of FGF-2 to the cell surface. The lack of competition between these two anti-HIV agents rules out the potential involvement of heparan sulfate proteoglycans in the mechanism of anti-HIV effect of HB-19, thus pointing out that nucleolin is its main target.  相似文献   

2.
The growth factor midkine (MK) is a cytokine that inhibits the attachment of human immunodeficiency virus particles by a mechanism similar to the nucleolin binding HB-19 pseudopeptide. Here we show that the binding of MK to cells occurs specifically at a high and a low affinity binding site. HB-19 prevents the binding of MK to the low affinity binding site only. Confocal immunofluorescence laser microscopy revealed the colocalization of MK and the cell-surface-expressed nucleolin at distinct spots. The use of various deletion constructs of nucleolin then indicated that the extreme C-terminal end of nucleolin, containing repeats of the amino acid motif RGG, is the domain that binds MK. The specific binding of MK to cells is independent of heparan sulfate and chondroitin sulfate expression. After binding to cells, MK enters cells by an active process. Interestingly, the cross-linking of surface-bound MK with a specific antibody results in the clustering of surface nucleolin along with glycosylphosphatidylinositol-linked proteins CD90 and CD59, thus, pointing out that MK binding induces lateral assemblies of nucleolin with specific membrane components of lipid rafts. Our results suggest that the cell surface-expressed nucleolin serves as a low affinity receptor for MK and could be implicated in its entry process.  相似文献   

3.
The growth factor midkine (MK) is a cytokine that inhibits HIV infection in cell cultures in an autocrine and paracrine manner by blocking the attachment of HIV particles to permissive cells. MK mRNA is systematically expressed in adult peripheral blood lymphocytes from healthy donors, while its expression becomes markedly but transiently increased upon in vitro treatment of lymphocytes with IL-2 or IFN-7 and activation of T lymphocytes by PHA or through the engagement of the CD28 antigen. The binding of MK to cells occurs specifically at a high and a low affinity binding site. This low affinity-binding site is the cell-surface expressed nucleolin, which is implicated in the mechanism of the initial attachment of HIV particles to cells. Accordingly, the nucleolin-binding HB-19 pseudopeptide has no effect on the MK binding to the high affinity binding site, whereas it prevents the binding of MK to the low affinity binding site, thus suggesting the low affinity receptor of MK is the cell-surface-expressed nucleolin. Confocal immunofluorescence laser microscopy revealed the colocalization of MK and the cell-surface-expressed nucleolin at distinct spots. The use of various deletion constructs of nucleolin then indicates that the extreme C-terminal end of nucleolin, containing repeats of the amino acid motif RGG, as the domain that binds MK. The specific binding of MK to the surface nucleolin is independent of heparan sulfate and chondroitin sulfate proteoglycans. After binding to cells, MK enters cells by an active process in which nucleolin and lipid rafts appear to be implicated. The potent and the distinct anti-HIV action of MK along with its enhanced expression in lymphocytes by various physiological stimuli, point out that MK is a cytokine that could be involved in HIV pathogenesis.  相似文献   

4.
The growth factor pleiotrophin (PTN) has been reported to bind heparan sulfate and nucleolin, two components of the cell surface implicated in the attachment of HIV-1 particles to cells. Here we show that PTN inhibits HIV-1 infection by its capacity to inhibit HIV-1 particle attachment to the surface of permissive cells. The beta-sheet domains of PTN appear to be implicated in this inhibitory effect on the HIV infection, in particular the domain containing amino acids 60-110. PTN binding to the cell surface is mediated by high and low affinity binding sites. Other inhibitors of HIV attachment known to bind specifically surface expressed nucleolin, such as the pseudopeptide HB-19 and the cytokine midkine prevent the binding of PTN to its low affinity-binding site. Confocal immunofluorescence laser microscopy revealed that the cross-linking of surface-bound PTN with a specific antibody results in the clustering of cell surface-expressed nucleolin and the colocalization of both PTN and nucleolin signals. Following its binding to surface-nucleolin, PTN is internalized by a temperature sensitive mechanism, a process which is inhibited by HB-19 and is independent of heparan and chondroitin sulfate proteoglycans. Nevertheless, proteoglycans might play a role in the concentration of PTN on the cell surface for a more efficient interaction with nucleolin. Our results demonstrate for the first time that PTN inhibits HIV infection and suggest that the cell surface-expressed nucleolin is a low affinity receptor for PTN binding to cells and it is also implicated in PTN entry into cells by an active process.  相似文献   

5.
Lactoferrin (Lf), a multifunctional molecule present in mammalian secretions and blood, plays important roles in host defense and cancer. Indeed, Lf has been reported to inhibit the proliferation of cancerous mammary gland epithelial cells and manifest a potent antiviral activity against human immunodeficiency virus and human cytomegalovirus. The Lf-binding sites on the cell surface appear to be proteoglycans and other as yet undefined protein(s). Here, we isolated a Lf-binding 105 kDa molecular mass protein from cell extracts and identified it as human nucleolin. Medium-affinity interactions ( approximately 240 nm) between Lf and purified nucleolin were further illustrated by surface plasmon resonance assays. The interaction of Lf with the cell surface-expressed nucleolin was then demonstrated through competitive binding studies between Lf and the anti-human immunodeficiency virus pseudopeptide, HB-19, which binds specifically surface-expressed nucleolin independently of proteoglycans. Interestingly, binding competition studies between HB-19 and various Lf derivatives in proteoglycan-deficient hamster cells suggested that the nucleolin-binding site is located in both the N- and C-terminal lobes of Lf, whereas the basic N-terminal region is dispensable. On intact cells, Lf co-localizes with surface nucleolin and together they become internalized through vesicles of the recycling/degradation pathway by an active process. Morever, a small proportion of Lf appears to translocate in the nucleus of cells. Finally, the observations that endocytosis of Lf is inhibited by the HB-19 pseudopeptide, and the lack of Lf endocytosis in proteoglycan-deficient cells despite Lf binding, point out that both nucleolin and proteoglycans are implicated in the mechanism of Lf endocytosis.  相似文献   

6.
7.
The nature of the interaction between the enveloped DNA-containing poxviruses and the surfaces of host cells as a first step in virus infection is not known. In this investigation we have identified and defined structural and functional properties of a 32-kDa protein of vaccinia virus. This protein is part of the virus envelope and binds to the cell surface of various cultured cells. The gene encoding the 32-kDa viral protein was mapped and sequenced. It was found to code a 35,426-Da protein with a large N-terminal domain with sequence homology to carbonic anhydrases and a C-terminal domain with sequences similar to those of the attachment glycoprotein VP7 of rotavirus and to transmembrane proteins. A potential cell surface binding domain was within the last 50 amino acid residues of the C terminus. The 32-kDa protein is basic, predicted pI 8.67, is synthesized at late times post-infection, may form dimers held by disulfide bonds at the single cysteine 262, and is apparently non-glycosylated. The 32-kDa protein is a vaccinia virus antigen, with predicted antigenic sites located near amino acids 108-110 (carbonic anhydrase domain) and 298-299 (transmembrane domain). Several lines of evidence suggest that the 32-kDa protein is needed for efficient virus replication in cultured cells but that in addition to this protein other viral proteins are involved in the process of virus entry into cells.  相似文献   

8.
The human immunodeficiency virus (HIV) integrase (IN) protein mediates an essential step in the retroviral lifecycle, the integration of viral DNA into human DNA. A DNA-binding domain of HIV IN has previously been identified in the C-terminal part of the protein. We tested truncated proteins of the C-terminal region of HIV-1 IN for DNA binding activity in two different assays: UV-crosslinking and southwestern blot analysis. We found that a polypeptide fragment of 50 amino acids (IN220-270) is sufficient for DNA binding. In contrast to full-length IN protein, this domain is soluble under low salt conditions. DNA binding of IN220-270 to both viral DNA and non-specific DNA occurs in an ion-independent fashion. Point mutations were introduced in 10 different amino acid residues of the DNA-binding domain of HIV-2 IN. Mutation of basic amino acid K264 results in strong reduction of DNA binding and of integrase activity.  相似文献   

9.
Hepatitis C virus (HCV) NS5B is an RNA-dependent RNA polymerase (RdRP), a central catalytic enzyme in HCV replication. While studying the subcellular localization of a NS5B mutant lacking the C-terminal membrane-anchoring domain, NS5Bt, we found that expression of the green fluorescent protein (GFP)-fused form was exclusively nucleolar. Interestingly, the distribution of endogenous nucleolin changed greatly in the cells expressing GFP-NS5B, with nucleolin colocalized with GFP-NS5B in perinuclear regions in addition to the nucleolus, suggesting that NS5B retains the ability to bind nucleolin. The interaction between nucleolin and NS5B was demonstrated by GST pull-down assay. GST pull-down assay results indicated that C-terminal region of nucleolin was important for its binding to NS5B. Scanning clustered alanine substitution mutants library of NS5B revealed two sites on NS5B that binds nucleolin. NS5B amino acids 208-214 and 500-506 were both found to be indispensable for the nucleolin binding. We reported that the latter sequence is essential for oligomerization of NS5B, which is a prerequisite for the RdRP activity. C-terminal nucleolin inhibited the NS5B RdRP activity in a dose-dependent manner. Taken together, this indicates the binding ability of nucleolin may be involved in NS5B functions.  相似文献   

10.
alpha-Agglutinin is a cell adhesion glycoprotein expressed on the cell wall of Saccharomyces cerevisiae alpha cells. Binding of alpha-agglutinin to its ligand a-agglutinin, expressed by a cells, mediates cell-cell contact during mating. Analysis of truncations of the 650-amino-acid alpha-agglutinin structural gene AG alpha 1 delineated functional domains of alpha-agglutinin. Removal of the C-terminal hydrophobic sequence allowed efficient secretion of the protein and loss of cell surface attachment. This cell surface anchorage domain was necessary for linkage to a glycosyl phosphatidylinositol anchor. A construct expressing the N-terminal 350 amino acid residues retained full a-agglutinin-binding activity, localizing the binding domain to the N-terminal portion of alpha-agglutinin. A 278-residue N-terminal peptide was inactive; therefore, the binding domain includes residues between 278 and 350. The segment of alpha-agglutinin between amino acid residues 217 and 308 showed significant structural and sequence similarity to a consensus sequence for immunoglobulin superfamily variable-type domains. The similarity of the alpha-agglutinin-binding domain to mammalian cell adhesion proteins suggests that this structure is a highly conserved feature of adhesion proteins in diverse eukaryotes.  相似文献   

11.
A 46-kDa receptor, coxsackievirus-adenovirus (Ad) receptor (CAR), mediates cell attachment of a number of different Ad serotypes; however, not all Ad serotypes utilize this receptor for infection. Moreover, the precise amino acid sequences in the Ad fiber protein that mediate cell attachment have yet to be identified. We investigated the interaction of subgroup D Ads with human ocular cells. Ad serotype 37 (Ad37), a virus associated with epidemic keratoconjunctivitis, but not a closely related virus serotype, Ad19p, exhibited preferential binding to and infection of human conjunctival cells. A single amino acid substitution in the Ad19p fiber distal domain (knob), Glu240 to Lys, conferred binding to conjunctival cells, while the reverse substitution in the Ad37 fiber abrogated cell binding. These findings provide new information on the fiber sequences that regulate Ad host cell tropism.  相似文献   

12.
The adenovirus (Ad) fiber protein mediates Ad binding to the coxsackievirus and Ad receptor (CAR) and is thus a major determinant of viral tropism. The fiber contains three domains: an N-terminal tail that anchors the fiber to the viral capsid, a central shaft region of variable length and flexibility, and a C-terminal knob domain that binds to cell receptors. Ad type 37 (Ad37), a subgroup D virus associated with severe ocular infections, is unable to use CAR efficiently to infect host cells, despite containing a CAR binding site in its fiber knob. We hypothesized that the relatively short, inflexible Ad37 fiber protein restricts interactions with CAR at the cell surface. To test this hypothesis, we analyzed the infectivity and binding of recombinant Ad particles containing modified Ad37 or Ad5 fiber proteins. Ad5 particles equipped with a truncated Ad5 fiber or with a chimeric fiber protein comprised of the Ad5 knob fused to the short, rigid Ad37 shaft domain had significantly reduced infectivity and attachment. In contrast, placing the Ad37 knob onto the long, flexible Ad5 shaft allowed CAR-dependent virus infection and cell attachment, demonstrating the importance of the shaft domain in receptor usage. Increasing fiber rigidity by substituting the predicted flexibility modules in the Ad5 shaft with the corresponding regions of the rigid Ad37 fiber dramatically reduced both virus infection and cell attachment. Cryoelectron microscopy (cryo-EM) single-particle analysis demonstrated the increased rigidity of this chimeric fiber. These studies demonstrate that both length and flexibility of the fiber shaft regulate CAR interaction and provide a molecular explanation for the use of alternative receptors by subgroup D Ad with ocular tropism. We present a molecular model for Ad-CAR interactions at the cell surface that explains the significance of fiber flexibility in cell attachment.  相似文献   

13.
14.
Several studies have addressed the interaction of the HIV Tat protein with the cell surface. Our analysis of the cell attachment-promoting activity of Tat and peptides derived from it revealed that the basic domain of Tat, not the arg-gly-asp (RGD) sequence, is required for cell attachment to Tat. Affinity chromatography with Tat peptides and immunoprecipitation with various anti-integrin antibodies suggest that the vitronectin-binding integrin, alpha v beta 5, is the cell surface protein that binds to the basic domain of Tat. The Tat basic domain contains the sequence RKKRRQRRR. A related sequence, KKQRFRHRNRKG, present in the heparin-binding domain of an alpha v beta 5 ligand, vitronectin, also bound alpha v beta 5 in affinity chromatography and, in combination with an RGD peptide, was an inhibitor of cell attachment to vitronectin. The alpha v beta 5 interaction with these peptides was not solely due to high content of basic amino acids in the ligand sequences; alpha v beta 5 did not bind substantially to peptides consisting entirely of arginine or lysine, whereas a beta 1 integrin did bind to these peptides. The interaction of alpha v beta 5 with Tat is atypical for integrins in that the binding to Tat is divalent cation independent, whereas the binding of the same integrin to an RGD- containing peptide or to vitronectin requires divalent cations. These data define an auxiliary integrin binding specificity for basic amino acid sequences. These basic domain binding sites may function synergistically with the binding sites that recognize RGD or equivalent sequences.  相似文献   

15.
Paramyxovirus hemagglutinin-neuraminidase (HN) plays roles in viral entry and maturation, including binding to sialic acid receptors, activation of the F protein to drive membrane fusion, and enabling virion release during virus budding. HN can thereby directly influence virulence and in a subset of avirulent Newcastle disease virus (NDV) strains, such as NDV Ulster, HN must be proteolytically activated to remove a C-terminal extension not found in other NDV HN proteins. Ulster HN is 616 amino acids long and the 45 amino acid C-terminal extension present in its precursor (HN0) form has to be cleaved to render HN biologically active. Here we show that Ulster HN contains an inter-subunit disulfide bond within the C-terminal extension at residue 596, which regulates HN activities and neuraminidase (NA) domain dimerization. We determined the crystal structure of the dimerized NA domain containing the C-terminal extension, which extends along the outside of the sialidase β-propeller domain and inserts C-terminal residues into the NA domain active site. The C-terminal extension also engages a secondary sialic acid binding site present in NDV HN proteins, which is located at the NA domain dimer interface, that most likely blocks its attachment function. These results clarify how the Ulster HN C-terminal residues lead to an auto-inhibited state of HN, the requirement for proteolytic activation of HN0 and associated reduced virulence.  相似文献   

16.
The integrase (IN) protein of human immunodeficiency virus type 1 (HIV-1) catalyzes site-specific cleavage of 2 bases from the viral long terminal repeat (LTR) sequence yet it binds DNA with little DNA sequence specificity. We have previously demonstrated that the C-terminal half of IN (amino acids 154-288) possesses a DNA binding domain. In order to further characterize this region, a series of clones expressing truncated forms of IN as N-terminal fusion proteins in E.coli were constructed and analyzed by Southwestern blotting. Proteins containing amino acids 1-263, 1-248 and 170-288 retained the ability to bind DNA, whereas a protein containing amino acids 1-180 showed no detectable DNA binding. This defines a DNA binding domain contained within amino acids 180-248. This region contains an arrangement of 9 lysine and arginine residues each separated by 2-4 amino acids (KxxxKxxxKxxxxRxxxRxxRxxxxKxxxKxxxK), spanning amino acids 211-244, which is conserved in all HIV-1 isolates. A clone expressing full-length IN with a C-terminal fusion of 16 amino acids was able to bind DNA comparably to a cloned protein with a free C-terminus, and an IN-specific monoclonal antibody which recognizes an epitope contained within amino acids 264-279 was unable to block DNA binding, supporting the evidence that a region necessary for binding lies upstream of amino acid 264.  相似文献   

17.
The Gly- and Arg-rich C-terminal region of human nucleolin is a 61-residue long domain involved in a number of protein-protein and protein-nucleic acid interactions. This domain contains 10 aDma residues in the form of aDma-GG repeats interspersed with Phe residues. The exact role of Arg dimethylation is not known, partly because of the lack of efficient synthetic methods. This work describes an effective synthetic strategy, generally applicable to long RGG peptides, based on side-chain protected aDma and backbone protected dipeptide Fmoc-Gly-(Dmob)Gly-OH. This strategy allowed us to synthesize both the unmodified (N61Arg) and the dimethylated (N61aDma) peptides with high yield ( approximately 26%) and purity. As detected by NMR spectroscopy, N61Arg does not possess any stable secondary or tertiary structure in solution and N(omega),N(omega)-dimethylation of the guanidino group does not alter the overall conformational propensity of this peptide. While both peptides bind single-stranded nucleic acids with similar affinities (K(d) = 1.5 x 10(-7) M), they exhibit a different behaviour in ssDNA affinity chromatography consistent with the difference in pK(a) values. It has been previously shown that N61Arg inhibits HIV infection at the stage of HIV attachment to cells. This study demonstrates that Arg-dimethylated C-terminal domain lacks any inhibition activity, raising the question of whether nucleolin expressed on the cell-surface is indeed dimethylated.  相似文献   

18.
Reversible tyrosine phosphorylation, catalyzed by receptor tyrosine kinases and receptor tyrosine phosphatases, plays an essential part in cell signaling during axonal development. Receptor protein tyrosine phosphatase-sigma has been implicated in the growth, guidance and repair of retinal axons. This phosphatase has also been implicated in motor axon growth and innervation. Insect orthologs of receptor protein tyrosine phosphatase-sigma are also implicated in the recognition of muscle target cells. A potential extracellular ligand for vertebrate receptor protein tyrosine phosphatase-sigma has been previously localized in developing skeletal muscle. The identity of this muscle ligand is currently unknown, but it appears to be unrelated to the heparan sulfate ligands of receptor protein tyrosine phosphatase-sigma. In this study, we have used affinity chromatography and tandem MS to identify nucleolin as a binding partner for receptor protein tyrosine phosphatase-sigma in skeletal muscle tissue. Nucleolin, both from tissue lysates and in purified form, binds to receptor protein tyrosine phosphatase-sigma ectodomains. Its expression pattern also overlaps with that of the receptor protein tyrosine phosphatase-sigma-binding partner previously localized in muscle, and nucleolin can also be found in retinal basement membranes. We demonstrate that a significant amount of muscle-associated nucleolin is present on the cell surface of developing myotubes, and that two nucleolin-binding components, lactoferrin and the HB-19 peptide, can block the interaction of receptor protein tyrosine phosphatase-sigma ectodomains with muscle and retinal basement membranes in tissue sections. These data suggest that muscle cell surface-associated nucleolin represents at least part of the muscle binding site for axonal receptor protein tyrosine phosphatase-sigma and that nucleolin may also be a necessary component of basement membrane binding sites of receptor protein tyrosine phosphatase-sigma.  相似文献   

19.
Monoclonal antibodies (MAbs) to the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus delineate seven overlapping antigenic sites which form a continuum on the surface of the molecule. Antibodies to five of these sites neutralize viral infectivity principally by preventing attachment of the virion to cellular receptors. Through the identification of single amino acid substitutions in variants which escape neutralization by MAbs to these five antigenic sites, a neutralization map of HN was constructed, identifying several residues that contribute to the epitopes recognized by MAbs which block the attachment function of the molecule. These epitopes are defined, at least in part, by three domains on HN: residues 193 to 201; 345 to 353 (which include the only linear epitope we have identified in HN); and a C-terminal domain composed of residues 494, 513 to 521, and 569. To identify HN residues directly involved in receptor recognition, each of the variants was tested for its ability to agglutinate periodate-modified chicken erythrocytes. One variant with a single amino acid substitution at residue 193 was 2.5- to 3-fold more resistant to periodate treatment of erythrocytes than the wild-type virus, suggesting that this residue influences the binding of virus to a sialic acid-containing receptor(s) on the cell surface.  相似文献   

20.
DOC-2/DAB2 is the binding partner of myosin VI   总被引:6,自引:0,他引:6  
Myosin VI is a molecular motor that moves processively along actin filaments and is believed to play a role in cargo movement in cells. Here we found that DOC-2/DAB2, a signaling molecule inhibiting the Ras cascade, binds to myosin VI at the globular tail domain. DOC-2/DAB2 binds stoichiometrically to myosin VI with one molecule per one myosin VI heavy chain. The C-terminal 122 amino acid residues of DOC-2/DAB2, containing the Grb2 binding site, is identified to be critical for the binding to myosin VI. Actin gliding assay revealed that the binding of DOC-2/DAB2 to myosin VI can support the actin filament gliding by myosin VI, suggesting that it can function as a myosin VI anchoring molecule. The C-terminal domain but not the N-terminal domain of DOC-2/DAB2 functions as a myosin VI anchoring site. The present findings suggest that myosin VI plays a role in transporting DOC-2/DAB2, a Ras cascade signaling molecule, thus involved in Ras signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号