首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of genetic and molecular studies have implicated Chordin in the regulation of dorsoventral patterning during gastrulation. Chordin, a BMP antagonist of 120 kDa, contains four small (about 70 amino acids each) cysteine-rich domains (CRs) of unknown function. In this study, we show that the Chordin CRs define a novel protein module for the binding and regulation of BMPs. The biological activity of Chordin resides in the CRs, especially in CR1 and CR3, which have dorsalizing activity in Xenopus embryo assays and bind BMP4 with dissociation constants in the nanomolar range. The activity of individual CRs, however, is 5- to 10-fold lower than that of full-length Chordin. These results shed light on the molecular mechanism by which Chordin/BMP complexes are regulated by the metalloprotease Xolloid, which cleaves in the vicinity of CR1 and CR3 and would release CR/BMP complexes with lower anti-BMP activity than intact Chordin. CR domains are found in other extracellular proteins such as procollagens. Full-length Xenopus procollagen IIA mRNA has dorsalizing activity in embryo microinjection assays and the CR domain is required for this activity. Similarly, a C. elegans cDNA containing five CR domains induces secondary axes in injected Xenopus embryos. These results suggest that CR modules may function in a number of extracellular proteins to regulate growth factor signalling.  相似文献   

2.
3.
Twisted Gastrulation (Tsg) is a secreted molecule which regulates BMP signalling in the extracellular space as part of an evolutionarily conserved network of interacting proteins. In Xenopus, maternal xTsg mRNA can be found throughout the early embryo. After gastrulation, xTsg is expressed as part of the BMP4 synexpression group until late tadpole stages. Here we report the identification of a second Xenopus Tsg gene (xTsg-2). Xenopus Tsg-2 is highly homologousto xTsg. In particular, amino acid residues which have been shown to be required for the binding of xTsg to BMP and to Chordin are conserved. The expression of Xenopus Tsg-2 mRNA was restricted to late stages of embryonic development; it was detected at tadpole stages in lateral plate mesoderm, neural crest, branchial arches and head mesenchyme. In microinjection experiments, the activity of xTsg-2 mRNA was similar to that of xTsg. We conclude that two Tsg genes act in distinct temporal and spatial territories in the course of Xenopus embryonic development.  相似文献   

4.
Vertebrate Crossveinless-2 (CV2) is a secreted protein that can potentiate or antagonize BMP signaling. Through embryological and biochemical experiments we find that: (1) CV2 functions as a BMP4 feedback inhibitor in ventral regions of the Xenopus embryo; (2) CV2 complexes with Twisted gastrulation and BMP4; (3) CV2 is not a substrate for tolloid proteinases; (4) CV2 binds to purified Chordin protein with high affinity (K(D) in the 1 nM range); (5) CV2 binds even more strongly to Chordin proteolytic fragments resulting from Tolloid digestion or to full-length Chordin/BMP complexes; (6) CV2 depletion causes the Xenopus embryo to become hypersensitive to the anti-BMP effects of Chordin overexpression or tolloid inhibition. We propose that the CV2/Chordin interaction may help coordinate BMP diffusion to the ventral side of the embryo, ensuring that BMPs liberated from Chordin inhibition by tolloid proteolysis cause peak signaling levels.  相似文献   

5.
Here we report an unexpected role for the secreted Frizzled-related protein (sFRP) Sizzled/Ogon as an inhibitor of the extracellular proteolytic reaction that controls BMP signaling during Xenopus gastrulation. Microinjection experiments suggest that the Frizzled domain of Sizzled regulates the activity of Xolloid-related (Xlr), a metalloproteinase that degrades Chordin, through the following molecular pathway: Szl -| Xlr -| Chd -| BMP --> P-Smad1 --> Szl. In biochemical assays, the Xlr proteinase has similar affinities for its endogenous substrate Chordin and for its competitive inhibitor Sizzled, which is resistant to enzyme digestion. Extracellular levels of Sizzled and Chordin in the gastrula embryo and enzyme reaction constants were all in the 10(-8) M range, consistent with a physiological role in the regulation of dorsal-ventral patterning. Sizzled is also a natural inhibitor of BMP1, a Tolloid metalloproteinase of medical interest. Furthermore, mouse sFRP2 inhibited Xlr, suggesting a wider role for this molecular mechanism.  相似文献   

6.
Dorsoventral patterning is regulated by a system of interacting secreted proteins involving BMP, Chordin, Xolloid and Twisted gastrulation (Tsg). We have analyzed the molecular mechanism by which Tsg regulates BMP signaling. Overexpression of Tsg mRNA in Xenopus embryos has ventralizing effects similar to Xolloid, a metalloprotease that cleaves Chordin. In embryos dorsalized by LiCl treatment, microinjection of Xolloid or Tsg mRNA restores the formation of trunk-tail structures, indicating an increase in BMP signaling. Microinjection of Tsg mRNA leads to the degradation of endogenous Chordin fragments generated by Xolloid. The ventralizing activities of Tsg require an endogenous Xolloid-like activity, as they can be blocked by a dominant-negative Xolloid mutant. A BMP-receptor binding assay revealed that Tsg has two distinct and sequential activities on BMP signaling. First, Tsg makes Chordin a better BMP antagonist by forming a ternary complex that prevents binding of BMP to its cognate receptor. Second, after cleavage of Chordin by Xolloid, Tsg competes the residual anti-BMP activity of Chordin fragments and facilitates their degradation. This molecular pathway, in which Xolloid switches the activity of Tsg from a BMP antagonist to a pro-BMP signal once all endogenous full-length Chordin is degraded, may help explain how sharp borders between embryonic territories are generated.  相似文献   

7.
Multiple factors, including members of the FGF, TGF beta, and Wnt family of proteins, are important mediators in the regulation of dorsal-ventral pattern formation during vertebrate development. By using an expression cloning approach to identify novel factors that could regulate dorsal-ventral patterning in the Xenopus embryo, we isolated the Xenopus homologue of the human Os4 gene by virtue of its ability to induce a secondary dorsal axis. While Os4 homologues have been identified in a variety of species, and human Os4 is overexpressed in human tumors, the biological function of Os4 is unknown. To explore the mechanism by which Xenopus Os4 (XOs4) induces a secondary dorsal axis, we used Xenopus explant and whole-embryo assays. The secondary axis induced by XOs4 is distinct from that induced by activation of Wnt or FGF pathways but similar to that induced by inhibition of BMP signaling or activation of an Activin pathway. However, XOs4 did not inhibit BMP signaling in dissociated animal cap explants, indicating that XOs4 does not inhibit BMP signaling. Similar to activation of an Activin-like pathway, expression of XOs4 induces molecular markers for mesoderm in animal cap explants, although expression of gastrula-stage mesodermal markers was very weak and substantially delayed. Yet, XOs4 does not require activity of the Activin signal-transduction pathway for mesoderm induction as dominant-negative components of the Activin/Nodal/Vg1 pathway did not prevent XOs4-mediated induction of mesodermal derivatives. Finally, like Activin/Nodal/Vg1 pathways, XOs4 requires FGF signaling for expression of mesoderm markers. Results presented in this study demonstrate that XOs4 can induce mesoderm and dorsalize ventral mesoderm resulting in ectopic dorsal axis formation, suggesting a role for this large evolutionarily conserved gene family in early development.  相似文献   

8.
Signaling by bone morphogenetic proteins (BMPs) plays a central role in early embryonic patterning, organogenesis, and homeostasis in a broad range of species. Chordin, an extracellular antagonist of BMP signaling, is thought to readily diffuse in tissues, thus forming gradients of BMP inhibition that result in reciprocal gradients of BMP signaling. The latter determine cell fates along the embryonic dorsoventral axis. The secreted protein Twisted Gastrulation (TSG) is thought to help shape BMP signaling gradients by acting as a cofactor that enhances Chordin inhibition of BMP signaling. Here, we demonstrate that mammalian Chordin binds heparin with an affinity similar to that of factors known to functionally interact with heparan sulfate proteoglycans (HSPGs) in tissues. We further demonstrate that Chordin binding in mouse embryonic tissues was dependent upon its interaction with cell-surface HSPGs and that Chordin bound to cell-surface HSPGs (e.g. syndecans), but not to basement membranes containing the HSPG perlecan. Surprisingly, mammalian TSG did not bind heparin unless prebound to Chordin and/or BMP-4, although Drosophila TSG has been reported to bind heparin on its own. Results are also presented that indicate that Chordin-HSPG interactions strongly potentiate the antagonism of BMP signaling by Chordin and are necessary for the retention and uptake of Chordin by cells. These data and others regarding Chordin diffusion have implications for the paradigm of how Chordin is thought to regulate BMP signaling in the extracellular space and how gradients of BMP signaling are formed.  相似文献   

9.
To address the patterning function of the Bmp2, Bmp4 and Bmp7 growth factors, we designed antisense morpholino oligomers (MO) that block their activity in Xenopus laevis. Bmp4 knockdown was sufficient to rescue the ventralizing effects caused by loss of Chordin activity. Double Bmp4 and Bmp7 knockdown inhibited tail development. Triple Bmp2/Bmp4/Bmp7 depletion further compromised trunk development but did not eliminate dorsoventral patterning. Unexpectedly, we found that blocking Spemann organizer formation by UV treatment or beta-Catenin depletion caused BMP inhibition to have much more potent effects, abolishing all ventral development and resulting in embryos having radial central nervous system (CNS) structures. Surprisingly, dorsal signaling molecules such as Chordin, Noggin, Xnr6 and Cerberus were not re-expressed in these embryos. We conclude that BMP inhibition is sufficient for neural induction in vivo, and that in the absence of ventral BMPs, Spemann organizer signals are not required for brain formation.  相似文献   

10.
11.
In vertebrates, a bone morphogenetic protein (BMP) signaling pathway patterns all ventral cell fates along the embryonic axis. BMP activity is positively regulated by Tolloid, a metalloprotease, that can eliminate the activity of the BMP antagonist Chordin. A tolloid mutant in zebrafish, mini fin (mfn), exhibits a specific loss of ventral tail tissues. Here, we investigate the spatial and temporal requirements for Tolloid (Mfn) in dorsoventral patterning of the tail. Through chimeric analyses, we found that Tolloid (Mfn) functions cell non-autonomously in the ventral-most vegetal cells of the gastrula or their derivatives. We generated a tolloid transgene under the control of the inducible hsp70 promoter and demonstrate that tolloid (mfn) is first required at the completion of gastrulation. Although tolloid is expressed during gastrulation and dorsally and ventrally within the tail bud, our results indicate that Tolloid (Mfn) acts specifically in the ventral tail bud during a approximately 4 h period extending from the completion of gastrulation to early somitogenesis stages to regulate BMP signaling. Examination of the temporal requirements of Chordin activity by overexpression of the hsp70-tolloid transgene indicates that Chordin is required both during and after gastrulation for proper patterning of the tail, contrasting Tld's requirement only during post-gastrula stages. We hypothesize that the gastrula role of Chordin in tail patterning is to generate the proper size domains of cells to enter the ventral and dorsal tail bud, whereas post-gastrula Chordin activity patterns the derivatives of the tail bud. Thus, fine modulation of BMP signaling levels through the negative and positive actions of Chordin and Tolloid, respectively, patterns tail tissues.  相似文献   

12.
The determination of the vertebrate dorsoventral body axis is regulated in the extracellular space by a system of interacting secreted molecules consisting of BMP, Chordin, Tolloid and Twisted Gastrulation (Tsg). Tsg is a BMP-binding protein that forms ternary complexes with BMP and Chordin. We investigated the function of Tsg in embryonic patterning by generating point mutations in its two conserved cysteine-rich domains. Surprisingly, Tsg proteins with mutations in the N-terminal domain were unable to bind BMP, yet ventralized the embryo very effectively, indicating strong pro-BMP activity. This hyperventralizing Tsg activity required an intact C-terminal domain and could block the anti-BMP activity of isolated BMP-binding modules of Chordin (CRs) in embryonic assays. This activity was specific for CR-containing proteins as it did not affect the dorsalizing effects of Noggin or dominant-negative BMP receptor. The ventralizing effects of the xTsg mutants were stronger than the effect of Chordin loss-of-function in Xenopus or zebrafish. The results suggest that xTsg interacts with additional CR-containing proteins that regulate dorsoventral development in embryos.  相似文献   

13.
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.  相似文献   

14.
Positional information in the dorsoventral axis of the Drosophila embryo is encoded by a BMP activity gradient formed by synergistic signaling between the BMP family members Decapentaplegic (DPP) and Screw (SCW). short gastrulation (sog), which is functionally homologous to Xenopus Chordin, is expressed in the ventrolateral regions of the embryo and has been shown to act as a local antagonist of BMP signaling. Here we demonstrate that SOG has a second function, which is to promote BMP signaling on the dorsal side of the embryo. We show that a weak, homozygous-viable sog mutant is enhanced to lethality by reduction in the activities of the Smad family members Mad or Medea, and that the lethality is caused by defects in the molecular specification and subsequent cellular differentiation of the dorsal-most cell type, the amnioserosa. While previous data had suggested that the negative function of SOG is directed against SCW, we present data that suggests that the positive activity of SOG is directed towards DPP. We demonstrate that Chordin shares the same apparent ligand specificity as does SOG, preferentially inhibiting SCW but not DPP activity. However, in Drosophila assays Chordin does not have the same capacity to elevate BMP signaling as does SOG, identifying a functional difference in the otherwise well conserved process of dorsoventral pattern formation in arthropods and chordates.  相似文献   

15.
BMP signaling is modulated by a number of extracellular proteins, including the inhibitor Chordin, Tolloid-related enzymes (Tld), and the interacting protein Twisted Gastrulation (Tsg). Although in vitro studies have demonstrated Chordin cleavage by Tld enzymes, its significance as a regulatory mechanism in vivo has not been established in vertebrates. In addition, Tsg has been reported in different contexts to either enhance or inhibit BMP signaling through its interactions with Chordin. We have used the zebrafish gastrula to carry out structure/function studies on Chordin, by making versions of Chordin partially or wholly resistant to Tld cleavage and introducing them into chordin-deficient embryos. We examined the cleavage products generated in vivo from wild-type and altered Chordins, and tested their efficacy as BMP inhibitors in the embryo. We demonstrate that Tld cleavage is crucial in restricting Chordin function in vivo, and is carried out by redundant enzymes in the zebrafish gastrula. We also present evidence that partially cleaved Chordin is a stronger BMP inhibitor than the full-length protein, suggesting a positive role for Tld in regulating Chordin. We find that depletion of the embryo for Tsg leads to decreased BMP signaling, and to increased levels of Chordin. Finally, we show that Tsg also enhances BMP signaling in the absence of Chordin, and its depletion can partially rescue the chordin mutant phenotype, demonstrating that important components of the BMP signaling pathway remain unidentified.  相似文献   

16.
The liver, pancreas, and lungs are induced from endoderm progenitors by a series of dynamic growth factor signals from the mesoderm, but how the temporal-spatial activity of these signals is controlled is poorly understood. We have identified an extracellular regulatory loop required for robust bone morphogenetic protein (BMP) signaling in the Xenopus foregut. We show that BMP signaling is required to maintain foregut progenitors and induce expression of the secreted frizzled related protein Sizzled (Szl) and the extracellular metalloprotease Tolloid-like 1 (Tll1). Szl negatively regulates Tll activity to control deposition of a fibronectin (FN) matrix between the mesoderm and endoderm, which is required to maintain BMP signaling. Foregut-specific Szl depletion results in a loss of the FN matrix and failure to maintain robust pSmad1 levels, causing a loss of foregut gene expression and organ agenesis. These results have implications for BMP signaling in diverse contexts and the differentiation of foregut tissue from stem cells.  相似文献   

17.
18.
Inomata H  Haraguchi T  Sasai Y 《Cell》2008,134(5):854-865
Dorsal axial formation during vertebrate embryogenesis exhibits robust resistance to perturbations in patterning signals. However, how such stability is supported at the molecular level remains largely elusive. Here we show that Xenopus ONT1, an Olfactomedin-class secreted protein, stabilizes axial formation by restricting Chordin activity on the dorsal side. When ONT1 function is attenuated, the embryo becomes hyperdorsalized by a normally subeffective dose of Chordin. ONT1 binds Chordin and BMP1/Tolloid-class proteinases (B1TP) via distinct domains and acts as a secreted scaffold that enhances B1TP-mediated Chordin degradation by facilitating enzyme-substrate association. ONT1 is indispensable for fine-tuning BMP signaling in the axial tissue, and a similar role has been suggested for dorsally expressed BMPs such as ADMP. Simultaneous inhibition of ONT1 and dorsally expressed BMPs (ADMP and BMP2) synergistically caused drastic dorsalization. These results indicate that stable axial formation depends on two compensatory regulatory pathways involving ONT1/B1TP and dorsally expressed BMPs.  相似文献   

19.
In Xenopus, ectodermal patterning depends on a mediolateral gradient of BMP signaling, higher in the epidermis and lower in the neuroectoderm. Neural crest cells are specified at the border between the neural plate and the epidermis, at intermediate levels of BMP signaling. We recently described a novel secreted protein, Tsukushi (TSK), which works as a BMP antagonist during chick gastrulation. Here, we report on the Xenopus TSK gene (X-TSK), and show that it is involved in neural crest specification. X-TSK expression accumulates after gastrulation at the anterior-lateral edges of the neural plate, including the presumptive neural crest region. In gain-of-function experiments, X-TSK can strongly enhance neural crest specification by the dorsolateral mesoderm or X-Wnt8 in ectodermal explants, while the electroporation of X-TSK mRNA in the lateral ectoderm of embryos after gastrulation can induce the expression of neural crest markers in vivo. By contrast, depletion of X-TSK in explants or embryos impairs neural crest specification. Similarly to its chick homolog, X-TSK works as a BMP antagonist by direct binding to BMP4. However, X-TSK can also indirectly regulate BMP4 mRNA expression at the neural plate border via modulation of the Delta-Notch signaling pathway. We show that X-TSK directly binds to the extracellular region of X-delta-1, and modulates Delta-dependent Notch activity. We propose that X-TSK plays a key role in neural crest formation by directly regulating BMP and Delta activities at the boundary between the neural and the non-neural ectoderm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号