首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of reduced glutathione (GSH) were investigated on invitro lipid peroxidation of hepatic microsomes obtained from Long-Evans Hooded rats fed chemically defined, purified diets containing adequate or documented deficiencies of vitamin E (E), selenium (Se) or both. Glutathione inhibited lipid peroxidation mediated by both NADPH-dependent enzymatic and ascorbate-dependent non-enzymatic systems. The inhibitory effect of GSH was observed in microsomes obtained from E supplemented groups whereas it had no effect on microsomes from E deficient animals. Selenium status had no effect on GSH inhibition. Glutathione was found to be specific for the E dependent inhibition of lipid peroxidation and could not be substituted by other sulfhydryl compounds tested. Also, GSH did not inhibit non-enzymatic lipid peroxidation of heat-denatured microsomes from either E-supplemented groups or any of the other dietary regimens.  相似文献   

2.
Microsomal NADPH-driven electron transport is known to initiate lipid peroxidation by activating oxygen in the presence of iron. This pro-oxidant effect can mask an antioxidant function of NADPH-driven electron transport in microsomes via vitamin E recycling from its phenoxyl radicals formed in the course of peroxidation. To test this hypothesis we studied the effects of NADPH on the endogenous vitamin E content and lipid peroxidation induced in liver microsomes by an oxidation system independent of iron: an azo-initiator of peroxyl radicals, 2,2'-azobis (2,4-dimethylvaleronitrile), (AMVN), in the presence of an iron chelator deferoxamine. We found that under conditions NADPH: (i) inhibited lipid peroxidation; (ii) this inhibitory effect was less pronounced in microsomes from vitamin E-deficient rats than in microsomes from normal rats; (iii) protected vitamin E from oxidative destruction; (iv) reduced chromanoxyl radicals of vitamin E homologue with a 6-carbon side-chain, chromanol-alpha-C-6. Thus NADPH-driven electron transport may function both to initiate and/or inhibit lipid peroxidation in microsomes depending on the availability of transition metal catalysts.  相似文献   

3.
The peroxidation of rat liver microsomal lipids is stimulated in the presence of iron by the addition of NADPH or ascorbate and is inhibited by the addition of glutathione (GSH). The fate of GSH and the oxidative modification of proteins under these conditions have not been well studied. Rat liver microsomes were incubated at 37 degrees C under 95% O2:5% CO2 in the presence of 10 microM ferric chloride, 400 microM ADP, and either 450 microM ascorbic acid or 400 microM NADPH. Lipid peroxidation was assessed in the presence 0, 0.2, 0.5, 1, or 5 mM GSH by measuring thiobarbituric acid reactive substance (TBARS) and oxidative modification of proteins by measuring protein thiol and carbonyl groups. GSH inhibited TBARS and protein carbonyl group formation in both ascorbate and NADPH systems in a dose-dependent manner. Heat denaturing of microsomes or treatment with trypsin resulted in the loss of this protection. The formation of protein carbonyl groups could be duplicated by incubating microsomes with 4-hydroxynonenal. Ascorbate-dependent peroxidation caused a loss of protein thiol groups which was diminished by GSH only in fresh microsomes. Both boiling and trypsin treatment significantly decreased the basal protein thiol content of microsomes and enhanced ascorbate-stimulated lipid peroxidation. Protection against protein carbonyl group formation by GSH correlated with the inhibition of lipid peroxidation and appeared not to be due to the formation of the GSH conjugate of 4-hydroxynonenal as only trace amounts of this conjugate were detected. Ninety percent of the GSH lost after 60 min of peroxidation was recoverable as borohydride reducible material in the supernatant fraction. The remaining 10% could be accounted for as GSH-bound protein mixed disulfides. However, only 75% of the GSH lost during peroxidation appeared as glutathione disulfide, suggesting that some was converted to other soluble borohydride reducible forms. These data support a role for protein thiol groups in the GSH-mediated protection of microsomes against lipid peroxidation.  相似文献   

4.
Polyunsaturated fatty acids (PUFA) are vulnerable to peroxidative attack. Protecting PUFA from peroxidation is essential to utilize their beneficial effects in health and in preventing disease. The antioxidants vitamin E, t-butylhydroxy toluene (BHT) and t-butylhydroxy anisole (BHA) inhibited ascorbate/Fe2+-induced lipid peroxidation in rat liver microsomes. In addition, a number of spice principles, for example, curcumin (5–50 µM) from turmeric, eugenol (25–150 µM) from cloves and capsaicin (25–150 µM) from red chillies inhibited lipid peroxidation in a dose-dependent manner. Zingerone from ginger inhibited lipid peroxidation at high concentrations (> 150 µM) whereas linalool (coriander), piperine (black pepper) and cuminaldehyde (cumin) had only marginal inhibitory effects even at high concentrations (600 µM). The inhibition of lipid peroxidation by curcumin and eugenol was reversed by adding high concentrations of Fe2+.  相似文献   

5.
Effect of thiols on lipid peroxidation in rat liver microsomes   总被引:1,自引:0,他引:1  
The stimulatory or inhibitory effects of various thiol compounds on in vitro lipid peroxidation by iron-ascorbate in rat liver microsomes were determined. Glutathione had no measurable pro-oxidant capacity, in contrast, it protected against lipid peroxidation. N-Acetyl l-cysteine and S-methyl-glutathione had no effect on in vitro lipid peroxidation. l-Cysteine stimulated lipid peroxidation and also of d-penicillamine and dl-dithiothreitol the pre-oxidant capacity predominated the anti-oxidant capacity. Cysteamine afforded a pronounced protection against in vitro lipid peroxidation. In contrast to the labile character of the glutathione dependent protection, the protection by cysteamine was not affected by heat-pretreatment of the liver microsomes or alkylating protein sulfhydryl groups by N-ethyl maleimide. Again in contrast to glutathione, the protection against in vitro microsomal lipid peroxidation by cysteamine was not reduced after in vivo lipid peroxidation induced by CC14. This suggests that even after the process of lipid peroxidation has been started, administration of cysteamine might still be beneficial.  相似文献   

6.
T P Devasagayam 《FEBS letters》1986,205(2):246-250
Senescence is associated with decrease in the NADPH-induced lipid peroxidation in liver homogenate as well as rough and smooth microsomes of female rats. In the microsomal fractions, sensitivity to NADPH-induced lipid peroxidation is high in young adults (3-month-old), decreases in middle aged (12-month-old) and reaches lowest levels in senescent (30-month-old) rats. Increasing the concentration of co-factors or time of incubation does not alter this resistance observed in the senescent rats. Major factors responsible for this resistance in senescent rats seem to be low levels of substrate in the c reductase, cytochrome P-450 and high cholesterol:phospholipid ratios besides enhanced levels of superoxide dismutase, alpha-tocopherol and reduced glutathione.  相似文献   

7.
Dihydroxyfumaric acid induced lipid peroxidation in rat liver microsomes. This reaction was heat-insensitive contrary to the mitochondrial peroxidation reported in the previous paper, and was enhanced by p-chloromercuribenzoate. Additions of Fe2+ and Fe3+ stimulated both the lipid peroxidation and the disappearance of dihydroxyfumaric acid. On the other hand, addition of Mn2+ or Cu2+, which stimulated the disappearance of dihydroxyfumaric acid, inhibited the lipid peroxidation. Hydroxyl radical scavengers, superoxide dismutase and catalase had no effect on this lipid peroxidation and dihydroxyfumaric acid disappearance. The cytochrome p-450 content decreased about 70 % in parallel with the lipid peroxidation.  相似文献   

8.
Glutathione and lipid peroxidation in the aging rat   总被引:2,自引:0,他引:2  
1. Tissue extracts were prepared from liver, kidney, heart, brain, lung and spleen of male Sprague-Dawley rats of different ages (1-36 months); each of the extracts was analyzed for reduced glutathione (GSH) and lipid peroxides. 2. At all ages the GSH content in the liver was 3-10 times higher than that in other tissues. 3. In the old (36 months) rat the GSH content of all the tissues studied were lower (35-60%) than that in 2.5 month old rat. 4. The lipid peroxides levels increased by age in all tissues studied. 5. These findings indicate that general characteristics of aging tissue may include a decrease in GSH content and increase in lipid peroxides showing a decrease in reducing potential in senescence.  相似文献   

9.
Simultaneous addition of ascorbic acid and organic hydroperoxides to rat liver microsomes resulted in enhanced lipid peroxidation (approximately threefold) relative to incubation of organic hydroperoxides with microsomes alone. No lipid peroxidation was evident in incubations of ascorbate alone with microsomes. The stimulatory effect of ascorbate on linoleic acid hydroperoxide (LAHP)-dependent peroxidation was evident at all times whereas stimulation of cumene hydroperoxide (CHP)-dependent peroxidation occurred after a lag phase of up to 20 min. EDTA did not inhibit CHP-dependent lipid peroxidation but completely abolished ascorbate enhancement of lipid peroxidation. Likewise, EDTA did not significantly inhibit peroxidation by LAHP but dramatically reduced ascorbate enhancement of lipid peroxidation. The results reveal a synergistic prooxidant effect of ascorbic acid on hydroperoxide-dependent lipid peroxidation. The inhibitory effect of EDTA on enhanced peroxidation suggests a possible role for endogenous metals mobilized by hydroperoxide-dependent oxidations of microsomal components.  相似文献   

10.
Glutathione protects isolated rat liver nuclei against lipid peroxidation by inducing a lag period prior to the onset of peroxidation. This GSH-dependent protection was abolished by exposing isolated nuclei to the glutathione S-transferase inhibitor S-octylglutathione. In incubations containing 0.2 mM S-octylglutathione, the GSH-induced lag period was reduced from 30 to 5 min. S-Octylglutathione (0.2 mM) also completely inhibited nuclear glutathione S-transferase activity and reduced glutathione peroxidase activity by 85%. About 70% of the glutathione S-transferase activity associated with isolated nuclei was solubilized with 0.3% Triton X-100. This solubilized glutathione S-transferase activity was partially purified by utilizing a S-hexylglutathione affinity column. The partially purified nuclear glutathione S-transferase exhibited glutathione peroxidase activity towards lipid hydroperoxides in solution. The data from the present study indicate that a glutathione S-transferase associated with the nucleus may contribute to glutathione-dependent protection of isolated nuclei against lipid peroxidation. Evidence was obtained which indicates that this enzyme is distinct from the microsomal glutathione S-transferase.  相似文献   

11.
It has been shown in experiments in vitro that preincubation of rat liver microsomes with an ethanol solution of all-trans-retinoic acid in the final concentration 7.0 X 10(-5) M results in a decrease of both NADPN-dependent and spontaneous lipid peroxidation (to 53 and 70% of control, respectively) but did not influence ascorbate-dependent lipid peroxidation. Retinol at the same concentration induces more pronounced inhibition of all types of microsomal lipid peroxidation. The rate of NADPN-dependent lipid peroxidation decreases linearly as the retinoic acid concentration in the incubation medium is raised, whereas the rate of ascorbate-dependent lipid peroxidation drastically lessens only after the retinoic acid concentration in the medium is increased to 1.4 X 10(-4) M. The data obtained provide evidence in favour of the concepts of a possible role of vitamin A in LPO regulation in the body and point to the necessity of taking into consideration the antioxidant properties of retinol and retinoic acid while analysing their pharmacological action.  相似文献   

12.
It is shown that tetraphenylporphyrin (TPP) and its complexes with metals decrease the rate of the diene conjugate formation. The above compounds increase the malonic dialdehyde accumulation. The effect of TPP and its complexes with metals is connected with stimulation of lipid peroxidation in biomembranes.  相似文献   

13.
14.
2-Mercaptopropionylglycine, a synthetic thiol, significantly stimulated NADPH-dependent lipid peroxidation by rat liver microsomes, while the thiol inhibited the microsomal aminopyrine N-demethylase activity with an increase in lipid peroxidation. But, a strong inhibition of lipid peroxidation by EDTA could not abolish the inhibition of the N-demethylase activity by the thiol. Besides, the thiol markedly increased not only the Km value for aminopyrine N-demethylase but also the apparent Ks value for aminopyrine binding to the microsomal oxidized cytochrome P-450 by interacting with the cytochrome P-450.  相似文献   

15.
Defined steady-state oxygen partial pressures (PO2) were maintained constant with an oxystat system to study carbon tetrachloride (CCl4)-induced lipid peroxidation and oxygen uptake in rat liver microsomes. The initial rates of oxygen uptake and malondialdehyde formation indicated drastically increasing lipid peroxidation by decreasing PO2, attaining a maximum between 1-10 mmHg (0.1-1.3 kPa). Under these conditions, at the hypoxic end of the physiological PO2 in liver, CCl4 caused a 5-fold increase in the oxygen uptake rate and a 20-fold increase in the malondialdehyde formation rate while, at 80 mmHg (10.7 kPa) the haloalkane caused only an increase of 2- and 4-fold, respectively; in comparison, there was only a slight increase in NADPH-induced lipid peroxidation with increasing PO2. These data clearly demonstrate the critical role of low steady-state PO2 in CCl4-induced lipid peroxidation and support lipid peroxidation as a key factor in CCl4 hepatotoxicity.  相似文献   

16.
Lipid peroxidation in rat liver microsomes induced by asbestos fibres, crocidolite and chrysotile, is greatly increased in the presence of NADPH, leading to malondialdehyde levels comparable with those induced by CCl4, a very strong inducer of lipid peroxidation. This synergic effect only occurs during the first minutes and could be explained by an increase or a regeneration of the ferrous active sites of asbestos by NADPH, which in turn could rapidly be prevented by the adsorption of microsomal proteins on the surface of the fibres. It is not inhibited by superoxide dismutase, catalase and mannitol, indicating that oxygen radicals are not involved in the reaction. It is also not inhibited by desferrioxamine, indicating that it is not due to a release of free iron ions in solution from the fibres. Lipid peroxidation in NADPH-supplemented microsomes is also greatly increased upon addition of magnetite. This could be linked to the presence of ferrous ions in this solid iron oxide, since the ferric oxides haematite and goethite are completely inactive.  相似文献   

17.
A purified preparation of rat liver microsomal NADPH-cytochrome c reductase has been shown to catalyze the NADPH-dependent peroxidation of isolated microsomal lipid. In addition to ADP and ferric ion required for NADPH-dependent lipid peroxidation in whole microsomes, this system requires high ionic strength and a critical concentration of EDTA. The peroxidation activity can be inhibited by superoxide dismutase suggesting that the superoxide anion, produced by this flavoprotein, is involved in the lipid peroxidation reaction.  相似文献   

18.
19.
Endogenous alpha-tocopherol levels in isolated rat liver nuclei were determined to be 0.045 mol% (mol alpha-tocopherol per mol phospholipid x 100). This value corresponds to 970 polyunsaturated fatty acid (PUFA) moieties to one molecule of alpha-tocopherol in the nuclear membrane. Isolated nuclei, when incubated with various concentrations of exogenous alpha-tocopherol, took up only a small percent of initial levels of alpha-tocopherol present in the incubation media. Exogenous alpha-tocopherol, when incorporated in isolated nuclei above a threshold value of 0.085 mol%, effectively inhibited NADPH-induced lipid peroxidation. The addition of 1 mM glutathione lowered the threshold levels of alpha-tocopherol needed to inhibit lipid peroxidation to about 0.040 mol%. We suggest the data indicate a glutathione-dependent enhancement of the ability of alpha-tocopherol to inhibit nuclear lipid peroxidation.  相似文献   

20.
In the present study we investigated if administration of vitamin A could protect rat liver microsomes and mitochondria from in vitro peroxidation. Appreciable decrease of chemiluminescence and lipid peroxidation was measured in microsomal membranes from rats receiving vitamin A, with respect to control animals. In membranes derived from control animals, the fatty acid composition was profoundly modified when subjected to in vitro peroxidation mediated by ascorbate-Fe++, with a considerable decrease of 20:4 n6 and 22:6 n3 in mitochondria and 18:2 n6 and 20:4 n6 in microsomes. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of specific fatty acids was higher in supplemented animals than in control group when both kind of membranes were analyzed. These changes were less pronounced in membranes derived from rats receiving vitamin A. These results are in agreement with previous results that indicated that vitamin A may act as an antioxidant protecting membranes from deleterious effects.Abbreviations BHT butylated hydroxytoluene - BSA bovine serum albumin - CL chemiluminescence - PI peroxidizability index Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones Cientificas y Técnicas de la Republica Argentina  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号