首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mechanisms regulating adipose tissue pyruvate dehydrogenase   总被引:21,自引:20,他引:1  
1. Isolated rat epididymal fat-cell mitochondria showed an inverse relationship between ATP content and pyruvate dehydrogenase activity consistent with competitive inhibition of pyruvate dehydrogenase kinase by ADP. At constant ATP concentration pyruvate rapidly activated pyruvate dehydrogenase in fat-cell mitochondria, an observation consistent with inhibition of fat-cell pyruvate dehydrogenase kinase by pyruvate. Pyruvate dehydrogenase in fat-cell mitochondria was also activated by nicotinate (100mum) and by extramitochondrial Na(+) (replacing K(+)) but not by ouabain or insulin. 2. In rat epididymal fat-pads incubated in vitro pyruvate dehydrogenase was activated by addition of insulin in the absence of substrate or in the presence of glucose (10mm) or fructose (10mm). Glucose and fructose activated the dehydrogenase in the absence or in the presence of insulin, and pyruvate also activated in the absence of insulin. It is concluded that extracellular glucose, fructose and pyruvate may activate the dehydrogenase by raising intracellular pyruvate and that insulin may activate the dehydrogenase by some other mechanism. 3. Ouabain (300mum) and medium in which K(+) was replaced by Na(+), activated pyruvate dehydrogenase in epididymal fat-pads. Prostaglandin E(1) (1mug/ml), 5-methylpyrazole-3-carboxylate (10mum) and nicotinate (10mum), which are as effective as insulin as inhibitors of lipolysis and which like insulin lower tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate), did not activate pyruvate dehydrogenase. Higher concentrations of prostaglandin E(1) (10mug/ml) and nicotinate (100mum) produced some activation of the dehydrogenase. 4. It is concluded that the activation of pyruvate dehydrogenase by insulin is not due to the antilipolytic effect of the hormone and that the action of insulin in lowering adipose-cell concentrations of cyclic AMP does not afford an obvious explanation for the effect of the hormone on pyruvate dehydrogenase. The possibility that the effects of insulin, ouabain and K(+)-free medium may be mediated by Ca(2+) is discussed.  相似文献   

2.
In mammalian tissues, two types of regulation of the pyruvate dehydrogenase complex have been described: end product inhibition by acetyl CoA and NADH: and the interconversion of an inactive phosphorylated form and an active nonphosphorylated form by an ATP requiring kinase and a specific phosphatase. This article is largely concerned with the latter type of regulation of the complex in adipose tissue by insulin (and other hormones) and in heart muscle by lipid fuels. Effectors of the two interconverting enzymes include pyruvate and ADP which inhibit the kinase, acetoin which activates the kinase and Ca2+ and Mg2+ which both activate the phosphatase and inhibit the kinase. Evidence is presented that all components of the pyruvate dehydrogenase complex including the phosphatase and kinase are located within the inner mitochondrial membrane. Direct measurements of the matrix concentration of substrates and effectors is not possible by techniques presently available. This is the key problem in the identification of the mechansims involved in the alterations in pyruvate dehydrogenase activity observed in adipose tissue and muscle. A number of indirect approaches have been used and these are reviewed. Most hopeful is the recent finding in this laboratory that in both adipose tissue and heart muscle, differences in activity of pyruvate dehydrogenase in the intact tissue persist during preparation and subsequent incubation of mitochondria.  相似文献   

3.
The sensitivity of rat epididymal-adipose-tissue pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase to Ca2+ ions was studied both in mitochondrial extracts and within intact coupled mitochondria. It is concluded that all three enzymes may be activated by increases in the intramitochondrial concentration of Ca2+ and that the distribution of Ca2+ across the mitochondrial inner membrane is determined, as in rat heart mitochondria, by the relative activities of a uniporter (which transports Ca2+ into mitochondria and is inhibited by Mg2+ and Ruthenium Red) and an antiporter (which allows Ca2+ to leave mitochondria in exchange for Na+ and is inhibited by diltiazem). Previous studies with incubated fat-cell mitochondria have indicated that the increases in the amount of active non-phosphorylated pyruvate dehydrogenase in rat epididymal tissue exposed to insulin are the result of activation of pyruvate dehydrogenase phosphate phosphatase. In the present studies, no changes in the activity of the phosphatase were found in extracts of mitochondria, and thus it seemed likely that insulin altered the intramitochondrial concentration of some effector of the phosphatase. Incubation of rat epididymal adipose tissue with medium containing a high concentration of CaCl2 (5mM) was found to increase the active form of pyruvate dehydrogenase to much the same extent as insulin. However, the increases caused by high [Ca2+] in the medium were blocked by Ruthenium Red, whereas those caused by insulin were not. Moreover, whereas the increases resulting from both treatments persisted during the preparation of mitochondria and their subsequent incubation in the absence of Na+, only the increases caused by treatment of the tissue with insulin persisted when the mitochondria were incubated in the presence of Na+ under conditions where the mitochondria are largely depleted of Ca2+. It is concluded that insulin does not act by increasing the intramitochondrial concentration of Ca2+. This conclusion was supported by finding no increases in the activities of the other two Ca2+-responsive intramitochondrial enzymes (NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in mitochondria prepared from insulin-treated tissue compared with controls.  相似文献   

4.
1. In epididymal adipose tissue synthesizing fatty acids from fructose in vitro, addition of insulin led to a moderate increase in fructose uptake, to a considerable increase in the flow of fructose carbon atoms to fatty acid, to a decrease in the steady-state concentration of lactate and pyruvate in the medium, and to net uptake of lactate and pyruvate from the medium. It is concluded that insulin accelerates a step in the span pyruvate-->fatty acid. 2. Mitochondria prepared from fat-cells exposed to insulin put out more citrate than non-insulin-treated controls under conditions where the oxaloacetate moiety of citrate was formed from pyruvate by pyruvate carboxylase and under conditions where it was formed from malate. This suggested that insulin treatment of fat-cells led to persistent activation of pyruvate dehydrogenase. 3. Insulin treatment of epididymal fat-pads in vitro increased the activity of pyruvate dehydrogenase measured in extracts of the tissue even in the absence of added substrate; the activities of pyruvate carboxylase, citrate synthase, glutamate dehydrogenase, acetyl-CoA carboxylase, NADP-malate dehydrogenase and NAD-malate dehydrogenase were not changed by insulin. 4. The effect of insulin on pyruvate dehydrogenase activity was inhibited by adrenaline, adrenocorticotrophic hormone and dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate). The effect of insulin was not reproduced by prostaglandin E(1), which like insulin may lower the tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate) and inhibit lipolysis. 5. Adipose tissue pyruvate dehydrogenase in extracts of mitochondria is almost totally inactivated by incubation with ATP and can then be reactivated by incubation with 10mm-Mg(2+). In this respect its properties are similar to that of pyruvate dehydrogenase from heart and kidney where evidence has been given that inactivation and activation are catalysed by an ATP-dependent kinase and a Mg(2+)-dependent phosphatase. Evidence is given that insulin may act by increasing the proportion of active (dephosphorylated) pyruvate dehydrogenase. 6. Cyclic AMP could not be shown to influence the activity of pyruvate dehydrogenase in mitochondria under various conditions of incubation. 7. These results are discussed in relation to the control of fatty acid synthesis in adipose tissue and the role of cyclic AMP in mediating the effects of insulin on pyruvate dehydrogenase.  相似文献   

5.
Hormone-stimulated lipolysis in adipose tissue was inhibited by fluoroacetate and there was a concomitant decrease in both the basal and hormone-stimulated cyclic AMP levels. Adenylate cyclase (EC 4.6.1.1) activity in membrane preparations was inhibited by fluoroacetate. There was no influence of fluoroacetate on the low Km cyclic AMP phosphodiesterase (EC 3.1.4.17) activity. The rate of glucose conversion to fatty acids was increased when adipose tissue was incubated in the presence of fluoroacetate. The outputs of pyruvate and lactate into the incubation medium were decreased at this time, suggesting decreased tissue pyruvate levels and a site of activation of lipogenesis distal to pyruvate formation. Pyruvate dehydrogenase (EC 1.2.4.1) activity was increased twofold in adipose tissue incubated in the presence of fluoroacetate. This was attributed to a fluoroacetate-induced inhibition of pyruvate dehydrogenase kinase, the enzyme responsible for inactivating the pyruvate dehydrogenase complex. Glucose transport was increased to a small but significant degree by fluoroacetate. In addition, both the tissue content of citrate and its release into the incubation medium were increased, suggesting that fluoroacetate resulted in an inhibition of aconitase (EC 4.2.1.3). The tissue ATP content was unchanged. Because the antilipolytic and lipogenic effects of fluoroacetate parallel those of insulin, they may share a common mechanism.  相似文献   

6.
1. The mechanism by which insulin activates pyruvate dehydrogenase in rat epididymal adipose tissue was further investigated. 2. When crude extracts, prepared from tissue segments previously exposed to insulin (2m-i.u/ml) for 2min, were supplemented with Mg-2+, Ca-2+, glucose and hexokinase and incubated at 30 degrees C, they displayed an enhanced rate of increase in pyruvate dehydrogenase activity compared with control extracts. 3. When similar extracts were instead supplemented with fluoride, ADP, creatine phosphate and creatine kinase, the rate of decrease in pyruvate dehydrogenase activity observed during incubation at 30 degrees C was unaffected by insulin treatment. 4. It is suggested that insulin increases the fraction of pyruvate dehydrogenase present in the tissue in the active dephospho form by increasing the activity of pyruvate dehydrogenase phosphate phosphatase.  相似文献   

7.
The effects of Mg2+ on the activity of pyruvate dehydrogenase phosphate phosphatase within intact mitochondria prepared from control and insulin-treated rat epididymal adipose tissue was explored by incubating the mitochondria in medium containing the ionophore A23187. The apparent Ka for Mg2+ was approximately halved in the mitochondria derived from insulin-treated tissue in both the absence and the presence of Ca2+. In this system, the major effect of Ca2+ was also to decrease the apparent Ka for Mg2+, rather than to change the Vmax. of the phosphatase. Damuni, Humphreys & Reed [(1984) Biochem. Biophys. Res. Commun. 124, 95-99] have reported that spermine activates ox kidney pyruvate dehydrogenase phosphate phosphatase. Studies were carried out on phosphatase from pig heart and rat epididymal adipose tissue which confirm and extend this observation. The major effect of spermine is shown to be a decrease in the Ka for Mg2+, which is apparent in both the presence and the absence of Ca2+. Spermine did not affect the sensitivity of the phosphatase to Ca2+ at saturating concentrations of Mg2+. Other polyamines tested were not as effective as spermine. No alteration in the maximum activity or Mg2+-sensitivity of pyruvate dehydrogenase phosphate phosphatase was apparent in extracts of mitochondria from insulin-treated tissue. The close similarity of the effects of spermine and the changes in kinetic properties of pyruvate dehydrogenase phosphate phosphatase within mitochondria from insulin-treated adipose tissue suggests that insulin may activate pyruvate dehydrogenase by increasing the concentration of spermine within the mitochondria. However, it is concluded that insulin is more likely to alter the interaction of the pyruvate dehydrogenase system with some other polybasic intramitochondrial component whose action can be mimicked by spermine.  相似文献   

8.
1. Adipocytes from rat epididymal fat-pads were incubated for 30 min with 5 mM-glucose and concentrations of lactate, pyruvate and amino acids typical of those found in rat plasma. 2. PDHa (active form of pyruvate dehydrogenase) activity was significantly increased after incubation of the cells with insulin (200 micro-i.u./ml), and decreased by incubation with palmitate (0.5--2 mM). 3. In the presence of insulin, palmitate did not decrease PDHa activity. 4. Dichloroacetate (1 mM) increased PDHa activity in the absence of palmitate to the same extent as did insulin. In the presence of dichloroacetate but the absence of insulin, palmitate decreased PDHa activity. In the presence of dichloroacetate and insulin, palmitate again did not decrease PDHa activity. 5. It is concluded that, in the presence of glucose, insulin has a strong protective action against inactivation of adipocyte PDHa by fatty acids.  相似文献   

9.
1. Effects of alpha-cyano-4-hydroxycinnamate and alpha-cyanocinnamate on a number of enzymes involved in pyruvate metabolism have been investigated. Little or no inhibition was observed of any enzyme at concentrations that inhibit completely mitochondrial pyruvate transport. At much higher concentrations (1 mM) some inhibition of pyruvate carboxylase was apparent. 2. Alpha-Cyano-4-hydroxycinnamate (1-100 muM) specifically inhibited pyruvate oxidation by mitochondria isolated from rat heart, brain, kidney and from blowfly flight muscle; oxidation of other substrates in the presence or absence of ADP was not affected. Similar concentrations of the compound also inhibited the carboxylation of pyruvate by rat liver mitochondria and the activation by pyruvate of pyruvate dehydrogenase in fat-cell mitochondria. These findings imply that pyruvate dehydrogenase, pyruvate dehydrogenase kinase and pyruvate carboxylase are exposed to mitochondrial matrix concentrations of pyruvate rather than to cytoplasmic concentrations. 3. Studies with whole-cell preparations incubated in vitro indicate that alpha-cyano-4-hydroxycinnamate or alpha-cyanocinnamate (at concentrations below 200 muM) can be used to specifically inhibit mitochondrial pyruvate transport within cells and thus alter the metabolic emphasis of the preparation. In epididymal fat-pads, fatty acid synthesis from glucose and fructose, but not from acetate, was markedly inhibited. No changes in tissue ATP concentrations were observed. The effects on fatty acid synthesis were reversible. In kidney-cortex slices, gluconeogenesis from pyruvate and lactate but not from succinate was inhibited. In the rat heart perfused with medium containing glucose and insulin, addition of alpha-cyanocinnamate (200 muM) greatly increased the output and tissue concentrations of lactate plus pyruvate but decreased the lactate/pyruvate ratio. 4. The inhibition by cyanocinnamate derivatives of pyruvate transport across the cell membrane of human erythrocytes requires much higher concentrations of the derivatives than the inhibition of transport across the mitochondrial membrane. Alpha-Cyano-4-hydroxycinnamate appears to enter erythrocytes on the cell-membrane pyruvate carrier. Entry is not observed in the presence of albumin, which may explain the small effects when these compounds are injected into whole animals.  相似文献   

10.
The control of pyruvate dehydrogenase activity by inactivation and activation was studied in intact mitochondria isolated from rabbit heart. Pyruvate dehydrogenase could be completely inactivated by incubating mitochondria with ATP, oligomycin, and NaF. This loss in dehydrogenase activity was correlated with the incorporation of 32P from [gamma-32P]ATP into mitochondrial protein(s) and with a decrease in the mitochondrial oxidation of pyruvate. ATP may be supplied exogenously, generated from endogenous ADP during oxidative phosphorylation, or formed from exogenous ADP in carbonyl cyanid p-trifluoromethoxyphenylhydrazone-uncoupled mitochondria. With coupled mitochondria the concentration of added ATP required to half-inactivate the dehydrogenase was 0.24 mM. With uncoupled mitochondria the apparent Km was decreased to 60 muM ATP. Inactivation of pyruvate dehydrogenase by exogenous ATP was sensitive to atractyloside, suggesting that pyruvate dehydrogenase kinase acts internally to the atractyloside-sensitive barrier. The divalent cation ionophore, A23187, enhanced the loss of dehydrogenase activity. Pyruvate dehydrogenase activity is regulated additionally by pyruvate, inorganic phosphate, and ADP. Pyruvate, in the presence of rotenone, strongly inhibited inactivation. This suggests that pyruvate facilitates its own oxidation and that increases in pyruvate dehydrogenase activity by substrate may provide a modulating influence on the utilization of pyruvate via the tricarboxylate cycle. Inorganic phosphate protected the dehydrogenase from inactivation by ATP. ADP added to the incubation mixture together with ATP inhibited the inactivation of pyruvate dehydrogenase. This protection may result from a direct action on pyruvate dehydrogenase kinase, as ADP competes with ATP, and an indirect action, in that ADP competes with ATP for the translocase. It is suggested that the intramitochondrial [ATP]:[ADP] ratio effects the kinase activity directly, whereas the cytosolic [ATP]:[ADP] ratio acts indirectly. Mg2+ enhances the rate of reactivation of the inactivated pyruvate dehydrogenase presumably by accelerating the rate of dephosphorylation of the enzyme. Maximal activation is obtained with the addition of 0.5 mM Mg2+..  相似文献   

11.
Summary The action of insulin and sodium vanadate on the phosphorylation of uridine by skeletal muscle was studied in vitro. Insulin significantly increased the incorporation of 3H-uridine into uracil nucleotides by pieces of rat diaphragm incubated for 15 min in a phosphate-buffered medium. This action of the hormone was exceptionally consistent when MgATP was added to the incubation medium. In experiments in which pieces of psoas muscle were incubated in TRIS buffer in the presence and absence of insulin, the hormone caused a significant activation of uridine kinase measured in cytosolic extracts of the incubated tissue. In experiments with rat diaphragm similar to those with insulin, the vanadate ion caused a significant increase in phosphorylation of uridine. The results of these experiments provide preliminary support for the proposal that uracil nucleotide metabolism is regulated by insulin and that insulin activates uridine kinase, the limiting enzyme in the synthesis of uracil nucleotides from uridine by the salvage pathway.  相似文献   

12.
Increases in the amount of active, non-phosphorylated, pyruvate dehydrogenase which result from the perfusion of rat hearts with adrenaline were still evident during the preparation of mitochondria in sucrose-based media containing EGTA (at 0 degrees C) and their subsequent incubation at 30 degrees C in Na+-free KCl-based media containing respiratory substrates and EGTA. The differences from control values gradually diminished with time of incubation, but were still present after 8 min. Similar increases resulting from an increase in the concentration of Ca2+ in the perfusing medium also persisted. However, similar increases caused by 5 mM-pyruvate were only maintained during the preparation of mitochondria, not their incubation. Parallel increases, within incubated mitochondria, were found in the activity of the 2-oxoglutarate dehydrogenase complex assayed at a non-saturating concentration of 2-oxoglutarate. The enhancement of the activities of both of these Ca2+-sensitive enzymes within incubated mitochondria as a result of perfusion with adrenaline or a raised concentration of Ca2+ in the medium could be abolished within 1 min by the presence of 10 mM-NaCl. This effect of Na+ was blocked by 300 microM-diltiazem, which has been shown to inhibit Na+-induced egress of Ca2+ from rabbit heart mitochondria [Vághy, Johnson, Matlib, Wang & Schwartz (1982) J. Biol. Chem. 257, 6000-6002]. The enhancements could also be abolished by increasing the extramitochondrial concentration of Ca2+ to a value where it caused maximal activation of the enzymes within control mitochondria. The results are consistent with the hypothesis that adrenaline activates rat heart pyruvate dehydrogenase by increasing the intramitochondrial concentration of Ca2+ and that this increase persists through to incubated mitochondria. Support for this conclusion was obtained by the yielding of a similar set of results from parallel experiments performed on control mitochondria that had firstly been preincubated (under conditions of steady-state Ca2+ cycling across the inner membrane) with sufficient proportions of Ca-EGTA buffers to achieve a similar degree of Ca2+-activation of pyruvate dehydrogenase (as caused by adrenaline) and had then undergone the isolation procedure again.  相似文献   

13.
A method is described to measure the intracellular content of pyruvate and lactate in epididymal adipose tissue of the rat. The intracellular pyruvate concentration was approx. 330mum. Intracellular pyruvate contents and the rates of pyruvate output were increased when NNN'N'-tetramethyl-p-phenylenediamine was added, and decreased in the presence of alanine. Insulin addition caused an increase in intracellular pyruvate contents only at the earlier time-period studied (1.5min as against 20min). Pyruvate dehydrogenase activity was increased in adipose tissue incubated in vitro with insulin. This increase occurred subsequent to the rise in the intracellular pyruvate content induced by insulin addition. The possible physiological implications are discussed.  相似文献   

14.
In adipocytes from fed rats, the rate of fatty acid synthesis in the presence of glucose and insulin was inhibited 40% by valine (5 mm). tthis inhibition was largely abolished by the addition to the incubation medium of the transaminase inhibitor aminooxy acetate, and of pyruvate and agents which raise the intracellular pyruvate levels such as N,N,N1,N1-tetramethyl-p-phenylenediamine. Pyruvate output into the incubation medium from fat pads obtained from fed rats and incubated with glucose and insulin was decreased significantly by the addition of valine. When adipocytes were incubated under similar conditions, the final concentration of pyruvate in the incubation medium was 42 +/- 1.6 muM under control conditions and approximately one third of this value in the presence of 2.5 mM valine. Valine had no significant effect on pyruvate dehydrogenase (lipoate) (EC 1.2.4.1) activity when assayed in homogenates prepared from adipose tissue previously incubated for 60 min with the amino acid. Although the ketoacid analogue of valine alpha-ketoisovaleric acid, is a competitive inhibitor of pyruvate dehydrogenase (lipoate) (K1 = 1.4 mM), this cannot solely account for the valine-induced reduced rate of lipogenesis. Rather, the mechanism involves a reduction in pyruvate concentration and thereby a diminished flow through pyruvate dehydrogenase (lipoate). Details of the possible mechanism are discussed.  相似文献   

15.
The possibility of thiamine phosphates to participate in the regulation of pyruvate dehydrogenase complex activity on the level of isolated mitochondria is studied. It is shown that an increase in the thiamine diphosphate concentration in incubation medium produces no significant changes in the pyruvate dehydrogenase activity of mitochondria. The pyruvate dehydrogenase activity decreases when mitochondria are incubated with thiamine triphosphate or ATP under different conditions. Thiamine triphosphate is not able to replace ATP in kinase reaction of the isolated complex, but it inhibits reactivation of the complex with exogenase phosphatase; under the same conditions thiamine diphosphate activates phosphatase. Analysis of these data leads to conclusion that under native conditions an increase of the intramitochondrial thiamine triphosphate concentration can produce a drop in the pyruvate dehydrogenase complex activity by inhibition of the phosphatase reaction.  相似文献   

16.
Rat epididymal-adipose-tissue mitochondria were made selectively permeable to small molecules without the loss of matrix enzymes by treating the mitochondria with toluene under controlled conditions. With this preparation the entire pyruvate dehydrogenase system was shown to be retained within the mitochondrial matrix and to retain its normal catalytic activity. By using dilute suspensions of these permeabilized mitochondria maintained in the cuvette of a spectrophotometer, it was possible to monitor changes of pyruvate dehydrogenase activity continuously while the activities of the interconverting kinase and phosphatase could be independently manipulated. Permeabilized mitochondria were prepared from control and insulin-treated adipose tissue, and the properties of both the pyruvate dehydrogenase kinase and the phosphatase were compared in situ. No difference in kinase activity was detected, but increases in phosphatase activity were observed in permeabilized mitochondria from insulin-treated tissue. Further studies showed that the main effect of insulin treatment was a decrease in the apparent Ka of the phosphatase for Mg2+, in agreement with earlier studies with mitochondria made permeable to Mg2+ by using the ionophore A23187 [Thomas, Diggle & Denton (1986) Biochem. J. 238, 83-91]. No effects of spermine were detected, although spermine diminishes the Ka of purified phosphatase preparations for Mg2+. Since effects of insulin on pyruvate dehydrogenase phosphatase activity are not evident in mitochondrial extracts, it is concluded that insulin may act by altering some high-Mr component which interacts with the pyruvate dehydrogenase system within intact or permeabilized mitochondria, but not when the mitochondrial membranes are disrupted.  相似文献   

17.
THE CONTROL OF PYRUVATE DEHYDROGENASE IN ISOLATED BRAIN MITOCHONDRIA   总被引:13,自引:11,他引:2  
Abstract— The activity and control of the pyruvate dehydrogenase complex in isolated rat brain mitochondria has been studied. The activity of this complex in mitochondria as isolated from normal fed rats was 78 ± 10nmol.min−1 mg mitochondrial protein−1 (n = 18) which represented 70% of the total pyruvate dehydrogenase activity. The pyruvate dehydrogenase in isolated brain mitochondria could be inactivated by incubation in the presence of ATP, oligomycin and NaF. The rate of inactivation was dependent upon the added ATP concentration but inactivation below approx 30% of the total pyruvate dehydrogenase activity could not be achieved. The inactivation of pyruvate dehydrogenase in brain mitochondria was inhibited by pre-incubation with pyruvate. Reactivation of inactivated pyruvate dehydrogenase in rat brain mitochondria was incomplete in the incubation medium unless 10mM-Mg2++ 1 mM-Ca2+ were added; NaF, however, prevented any reactivation (Fig. 4). It is concluded that the pyruvate dehydrogenase complex in rat brain mitochondria is controlled in a manner similar to that in other tissues, and that pyruvate protection of pyruvate dehydrogenase activity may be important in maintaining brain energy metabolism.  相似文献   

18.
Glutamate (5mM) inhibited glucose conversion to fatty acids by approximately one-third in adipocytes from fed rats. This inhibition was significantly less in the pressence of pyruvate or 2-oxoglutarate. After incubation of adipose tissue from fed rats with glucose and insulin, pyruvate dehydrogenase activity was 180 plus or minus 17 mU/g wet weight. Addition of glutamine to the incubation medium decreased this activity significantly (118 plus or minus 14 mU/g wet weight). This inhibition by glutamate was also diminished when 2-oxoglutarate or pyruvate were present. Glutamate added to homohentates of adipose tissue had no effect on the activation of pyruvate dehydrogenase by Mg-2+. However, glutamate inhibited the active form of the enzyme and enhanced the rate of inactivation of the enzyme complex by ATP and Mg-2+. Aminooxyacetate, a transaminase inhibitor, did not reverse the effects of glutamate on pyruvate dehydrogenase nor fatty acid synthesis.  相似文献   

19.
The mechanism by which fatty acid addition leads to the inactivation of pyruvate dehydrogenase in intact rat liver mitochondria was investigated. In all cases the fatty acid octanoate was added to mitochondria oxidizing succinate. Addition of fatty acid caused an inactivation of pyruvate dehydrogenase in mitochondria incubated under State 3 conditions (glucose plus hexokinase), in uncoupled, oligomycin-treated mitochondria, and in rotenone-menadione-treated mitochondria, but not in uncoupled mitochondria or in mitochondria incubated under State 4 conditions. A number of metabolic conditions were found in which pyruvate dehydrogenase was inactivated concomitant with an elevation in the ATP/ADP ratio. This is consistent with the inverse relationship between the ATP/ADP ratio and the pyruvate dehydrogenase activity proposed by various laboratories. However, in several other metabolic conditions pyruvate dehydrogenase was inactivated while the ATP/ADP ratio either was unchanged or even decreased. This observation implies that there are likely other regulatory factors involved in the fatty acid-mediated inactivation of pyruvate dehydrogenase. Incubation conditions in State 3 were found in which the ATP/ADP and the acetyl-CoA/CoASH ratios remained constant and the pyruvate dehydrogenase activity was correlated inversely with the NADH/NAD+ ratio. Other State 3 conditions were found in which the ATP/ADP and the NADH/NAD+ ratios remained constant while the pyruvate dehydrogenase activity was correlated inversely with the acetyl-CoA/CoASH ratio. Further evidence supporting these experiments with intact mitochondria was the observation that the pyruvate dehydrogenase kinase activity of a mitochondrial extract was stimulated strongly by acetyl-CoA and was inhibited by NAD+ and CoASH. In contrast to acetyl-CoA, octanoyl-CoA inhibited the kinase activity. These results indicate that the inactivation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria may be mediated through effects of the NADH/NAD+ ratio and the acetyl-CoA/CoASH ratio on the interconversion of the active and inactive forms of the enzyme complex catalyzed by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号