共查询到20条相似文献,搜索用时 15 毫秒
1.
Spider silks have been shown to have impressive mechanical properties. In order to assess the effect of extension rate, both quasi-static and high-rate tensile properties were determined for single fibers of major (MA) and minor (MI) ampullate single silk from the orb weaving spider Nephila clavipes . Low rate tests have been performed using a DMA Q800 at 10(-3) s(-1), while high rate analysis was done at 1700 s(-1) utilizing a miniature Kolsky bar apparatus. Rate effects exhibited by both respective silk types are addressed, and direct comparison of the tensile response between the two fibers is made. The fibers showed major increases in toughness at the high extension rate. Mechanical properties of these organic silks are contrasted to currently employed ballistic fibers and examination of fiber fracture mechanisms are probed via scanning electron microscope, revealing a globular rupture surface topography for both rate extremums. 相似文献
2.
N Leader-Williams 《Journal of reproduction and fertility》1979,57(1):117-126
A total of 111 male reindeer of various ages was shot in all months of the year to study the relationship between the seasonal changes in testicular activity and the antler cycle. From the changes in testis weight, seminiferous tubular tissue area and plasma testosterone values and the occurrence of spermatogenesis, it is concluded that calves attain physiological puberty in their first year, during which they also complete an antler cycle. The amplitude of the cyclical change in testis weight and plasma testosterone values increases with age and can be correlated with the earlier onset of events in the spermatogenic and antler cycles of older animals. The duration of the spermatogenic and testosterone cycles of reindeer is short, and is inversely related to the long period spent without antlers. It is suggested that testosterone strongly influences the antler cycle of reindeer males. 相似文献
3.
Hansen U Zioupos P Simpson R Currey JD Hynd D 《Journal of biomechanical engineering》2008,130(1):011011
Bone mechanical properties are typically evaluated at relatively low strain rates. However, the strain rate related to traumatic failure is likely to be orders of magnitude higher and this higher strain rate is likely to affect the mechanical properties. Previous work reporting on the effect of strain rate on the mechanical properties of bone predominantly used nonhuman bone. In the work reported here, the effect of strain rate on the tensile and compressive properties of human bone was investigated. Human femoral cortical bone was tested longitudinally at strain rates ranging between 0.14-29.1 s(-1) in compression and 0.08-17 s(-1) in tension. Young's modulus generally increased, across this strain rate range, for both tension and compression. Strength and strain (at maximum load) increased slightly in compression and decreased (for strain rates beyond 1 s(-1)) in tension. Stress and strain at yield decreased (for strain rates beyond 1 s(-1)) for both tension and compression. In general, there seemed to be a relatively simple linear relationship between yield properties and strain rate, but the relationships between postyield properties and strain rate were more complicated and indicated that strain rate has a stronger effect on postyield deformation than on initiation of yielding. The behavior seen in compression is broadly in agreement with past literature, while the behavior observed in tension may be explained by a ductile to brittle transition of bone at moderate to high strain rates. 相似文献
4.
The fracture mechanics parameter of the critical stress intensity factor (Kc) was determined by a modified compact tension test method, for the fracture of bovine tibia cortical bone at orientations of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 75 degrees and 90 degrees to the bone axis. It was established that, for a given loading rate, a variation in orientation from 0-90 degrees produced average increases in Kc from 3.2 to 6.5 MN m-3/2. 相似文献
5.
A histological and histochemical study of biopsy specimens from the Lapland reindeer antler indicated that the intercellular matrix of the cartilage that forms the partitions of longitudinal channels becomes calcified at virtually the initial stage of formation. The lacunae at the peripheries of the cartilaginous partitions are invaded by osteoblasts in a process comparable to endochondral ossification. The very centres of the partitions evidently become directly converted into bone without the presence of e.g. osteoclasts. The osseous partitions are remodelled by osteoclasts. The antler increases in diameter by periosteal apposition. 相似文献
6.
The mechanical response of skin to external loads is influenced by anisotropy and viscoelasticity of the tissue, but the underlying mechanisms remain unclear. Here, we report a study of the main effects of tissue orientation (TO, which is linked to anisotropy) and strain rate (SR, a measure of viscoelasticity), as well as the interaction effects between the two factors, on the tensile properties of skin from a porcine model. Tensile testing to rupture of porcine skin tissue was conducted to evaluate the sensitivity of the tissue modulus of elasticity (E) and fracture-related properties, namely maximum stress \((\sigma _{U})\) and strain \((\varepsilon _{U})\) at \(\sigma _{U}\), to varying SR and TO. Specimens were excised from the abdominal skin in two orientations, namely parallel (P) and right angle (R) to the torso midline. Each TO was investigated at three SR levels, namely 0.007–0.015 \(\hbox {s}^{-1}\) (low), 0.040 \(\hbox {s}^{-1}\) (mid) and 0.065 \(\hbox {s}^{-1}\) (high). Two-factor analysis of variance revealed that the respective parameters responded differently to varying SR and TO. Significant changes in the \(\sigma _{U}\) were observed with different TOs but not with SR. The \(\varepsilon _{U}\) decreased significantly with increasing SR, but no significant variation was observed for different TOs. Significant changes in E were observed with different TOs; E increased significantly with increasing SR. More importantly, the respective mechanical parameters were not significantly influenced by interactions between SR and TO. These findings suggest that the trends associated with the changes in the skin mechanical properties may be attributed partly to differences in the anisotropy and viscoelasticity but not through any interaction between viscoelasticity and anisotropy. 相似文献
7.
It is difficult to define the 'physiological' mechanical properties of bone. Traumatic failures in-vivo are more likely to be orders of magnitude faster than the quasistatic tests usually employed in-vitro. We have reported recently [Hansen, U., Zioupos, P., Simpson, R., Currey, J.D., Hynd, D., 2008. The effect of strain rate on the mechanical properties of human cortical bone. Journal of Biomechanical Engineering/Transactions of the ASME 130, 011011-1-8] results from tests on specimens of human femoral cortical bone loaded in tension at strain rates (epsilon ) ranging from low (0.08s(-1)) to high (18s(-1)). Across this strain rate range the modulus of elasticity generally increased, stress at yield and failure and strain at failure decreased for rates higher than 1s(-1), while strain at yield was invariant for most strain rates and only decreased at rates higher than 10s(-1). The results showed that strain rate has a stronger effect on post-yield deformation than on initiation of macroscopic yielding. In general, specimens loaded at high strain rates were brittle, while those loaded at low strain rates were much tougher. Here, a post-test examination of the microcracking damage reveals that microcracking was inversely related to the strain rate. Specimens loaded at low strain rates showed considerable post-yield strain and also much more microcracking. Partial correlation and regression analysis suggested that the development of post-yield strain was a function of the amount of microcracking incurred (the cause), rather than being a direct result of the strain rate (the excitation). Presumably low strain rates allow time for microcracking to develop, which increases the compliance of the specimen, making them tougher. This behaviour confirms a more general rule that the degree to which bone is brittle or tough depends on the amount of microcracking damage it is able to sustain. More importantly, the key to bone toughness is its ability to avoid a ductile-to-brittle transition for as long as possible during the deformation. The key to bone's brittleness, on the other hand, is the strain and damage localisation early on in the process, which leads to low post-yield strains and low-energy absorption to failure. 相似文献
9.
10.
This paper deals with the torsional moment depending on the angle of torsion of the compact bone in laboratory animals and humans. Based on the data from laboratory animals, obtained by measurement, the data on dependence of the torsional moment and the angle of torsion were assumed for humans. Measurements were carried out on four groups of compact bone in laboratory animals. One was the control group, and three other groups were treated by various vitamin D3 metabolites. Equal measurements were performed in only one group of compact bone in humans, due to the impossibility to treat humans with vitamin D3 metabolites. Functional relations between the angle of torsion and the torsional moment for all groups of animal body tissue were determined by measurements, and the results were used to assume the reaction of human compact bone tissue if treated by vitamin D3 metabolites. 相似文献
11.
Heterogeneity of the mechanical properties of demineralized bone 总被引:3,自引:0,他引:3
Knowledge of the mechanical properties of the collagenous component of bone is required for composite modeling of bone tissue and for understanding the age- and disease-related reductions in the ductility and strength of bone. The overall goal of this study was to investigate the heterogeneity of the mechanical properties of demineralized bone which remains unexplained and may be due to differences in the collagen structure or organization or in experimental protocols. Uniaxial tension tests were conducted to measure the elastic and failure properties of demineralized human femoral (n = 10) and tibial (n = 13) and bovine humeral (n = 8) and tibial (n = 8) cortical bone. Elastic modulus differed between groups (p = 0.02), varying from 275 +/- 94 MPa (mean +/- SD) to 450 + 50 MPa. Similarly, ultimate stress varied across groups from 15 + 4.2 to 26 + 4.7 MPa (p = 0.03). No significant differences in strain-to-failure were observed between any groups in this study (pooled mean of 8.4 +/- 1.6%; p = 0.42). However, Bowman et al. (1996) reported an average ultimate strain of 12.3 +/- 0.5% for demineralized bovine humeral bone, nearly 40% higher than our value. Taken together, it follows that all the monotonic mechanical properties of demineralized bone can display substantial heterogeneity. Future studies directed at explaining such differences may therefore provide insight into aging and disease of bone tissue. 相似文献
12.
Julie A. Motherway Peter Verschueren Georges Van der Perre Jos Vander Sloten Michael D. Gilchrist 《Journal of biomechanics》2009,42(13):2129-2135
Linear and depressed skull fractures are frequent mechanisms of head injury and are often associated with traumatic brain injury. Accurate knowledge of the fracture of cranial bone can provide insight into the prevention of skull fracture injuries and help aid the design of energy absorbing head protection systems and safety helmets. Cranial bone is a complex material comprising of a three-layered structure: external layers consist of compact, high-density cortical bone and the central layer consists of a low-density, irregularly porous bone structure.In this study, cranial bone specimens were extracted from 8 fresh-frozen cadavers (F=4, M=4; 81±11 years old). 63 specimens were obtained from the parietal and frontal cranial bones. Prior to testing, all specimens were scanned using a μCT scanner at a resolution of 56.9 μm. The specimens were tested in a three-point bend set-up at different dynamic speeds (0.5, 1 and 2.5 m/s). The associated mechanical properties that were calculated for each specimen include the 2nd moment of inertia, the sectional elastic modulus, the maximum force at failure, the energy absorbed until failure and the maximum bending stress. Additionally, the morphological parameters of each specimen and their correlation with the resulting mechanical parameters were examined.It was found that testing speed, strain rate, cranial sampling position and intercranial variation all have a significant effect on some or all of the computed mechanical parameters. A modest correlation was also found between percent bone volume and both the elastic modulus and the maximum bending stress. 相似文献
13.
Alireza Rahimi Reinhard Klein Ludger Keilig Marcus Abboud Gerhard Wahl Christoph Bourauel 《Journal of biomechanics》2009,42(14):863-2418
The assessment of the behavior of immediately loaded dental implants using biomechanical methods is of particular importance. The primary goal of this investigation is to optimize the function of the implants to serve for immediate loading. Animal experiments on reindeer antlers as a novel animal model will serve for investigation of the bone remodeling processes in the implant bed. The main interest is directed towards the time and loading-dependant behavior of the antler tissue around the implants. The aim and scope of this work was to design an autonomous loading device that has the ability to load an inserted implant in the antler with predefined occlusal forces for predetermined time protocols. The mechanical part of the device can be attached to the antler and is capable of cyclically loading the implant with forces of up to 100 N. For the calibration and testing of the loading device a biomechanical measuring system has been used. The calibration curve shows a logarithmic relationship between force and motor current and is used to control the force on the implant. A first test on a cast reindeer antler was performed successfully. 相似文献
14.
The evolution of the mechanical properties of amniote bone 总被引:1,自引:0,他引:1
J.D. Currey 《Journal of biomechanics》1987,20(11-12):1035-1044
162 specimens from 19 species of amniote were tested for various mechanical and physical properties to ascertain whether there were characteristic differences between different groups. All mechanical properties showed very great variation. In general the reptiles were not inferior to the mammals and birds. The histology of living forms was compared to that of fossil forms, to see whether 'weak' histology was more characteristic of primitive amniotes. The earliest reptiles probably had rather complaint bone, but it was probably tough. Modern types of bone appeared over two hundred million years ago. Very specialised bone, like that of the bullae of whales and antlers, may have evolved only in the mammals, but the fossil record is not complete enough to assert this confidently. 相似文献
15.
16.
In the context of osteoporosis, evaluation of bone fracture risk and improved design of epiphyseal bone implants rely on accurate
knowledge of the mechanical properties of trabecular bone. A multi-axial loading chamber was designed, built and applied to
explore the compressive multi-axial yield and strength properties of human trabecular bone from different anatomical locations.
A thorough experimental protocol was elaborated for extraction of cylindrical bone samples, assessment of their morphology
by micro-computed tomography and application of different mechanical tests: torsion, uni-axial traction, uni-axial compression
and multi-axial compression. A total of 128 bone samples were processed through the protocol and subjected to one of the mechanical
tests up to yield and failure. The elastic data were analyzed using a tensorial fabric–elasticity relationship, while the
yield and strength data were analyzed with fabric-based, conewise generalized Hill criteria. For each loading mode and more
importantly for the combined results, strong relationships were demonstrated between volume fraction, fabric and the elastic,
yield and strength properties of human trabecular bone. Despite the reviewed limitations, the obtained results will help improve
the simulation of the damage behavior of human bones and bone-implant systems using the finite element method. 相似文献
17.
J Timisj?rvi M Nieminen A L Sippola 《Comparative biochemistry and physiology. A, Comparative physiology》1984,79(4):601-609
The structure of the fur of the reindeer (6 adults, 4 calves) was studied with light and scanning electron microscopy and skin and rectal temperatures were measured in 216 living animals at varying ambient temperatures (-28 to +15 degrees C) and also on excised skin samples in the laboratory (temperature range -20 to +20 degrees C, wind 0 or 10 m/sec, 5 different directions). Guard hair count and length varied according to the site of excision and were on average 2000/cm2 and 12 mm on the foreleg, 1000/cm2 and 30 mm on the abdomen and 1700/cm2 and 30 mm on the back. The corresponding counts in the calves were higher but the hairs were shorter. The rectal temperatures ranged from 38 to 40 degrees C independently of the ambient temperature. The dependence of the skin temperature on the ambient temperature was complex in living animals. The dependence was strongest in the legs. The skin temperature of the excised samples depended rather linearly on the ambient temperature. It is concluded that the reindeer can maintain its body temperature also in severe cold although the extremities show characteristics of heterothermia. 相似文献
18.
Reindeer (or caribou), Rangifer tarandus, is the only extant species of deer in which females as well as males normally develop antlers that are cast and regrown each year. This study investigated the role of ovarian oestradiol in the regulation of the seasonal antler cycle in female reindeer. Ovariectomized Norwegian reindeer living outdoors in northern Norway (69 degrees N) were treated with continuous-release subcutaneous Silastic implants containing oestradiol, which maintained the blood concentrations of oestradiol within the physiological range for the mating season from June to October-November. The treatment with oestradiol induced the synchronized maturation of the antlers and rapid cleaning of the velvet-like skin in August-September in the ovariectomized reindeer, a pattern very similar to that observed in ovary-intact controls living under the same conditions. The removal of the steroid implant in October-November caused the premature casting of the antlers in early winter in two of five animals, while the remainder cast at the normal time in spring; this response was seen whether the animals had received one or two oestradiol implants in autumn. The antlers developed by the ovariectomized, oestradiol-treated females were significantly heavier and carried more branches than the ovariectomized animals without oestradiol replacement, and were marginally heavier than the antlers of intact controls. These results support the view that oestradiol is the biologically active steroid secreted by the ovary in intact female reindeers that induces the normal development of the antlers. Oestradiol stimulates the growth and mineralization of the antler bone, the cleaning of the velvet, and suppresses the casting of the hard antlers. This endocrine control ensures that the hard antlers, which function as weapons, are retained throughout the autumn and winter when the females are normally pregnant and when competition between females over food in the snow is most intense; hence there is a reproductive advantage to explain the evolution of antlers in females. 相似文献
19.
The subchondral bone has long been known to thicken in osteoarthritis. However, recent evidence has demonstrated that the turnover of the bone is increased several fold, and further suggests that the thickening occurs prior to degradation of the articular cartilage, indicating that it plays a role in the pathogenesis of osteoarthritis. The mechanical and biochemical properties of the subchondral bone are therefore of particular interest in any attempt to determine the nature of the factors initiating osteoarthritis. We have shown that the subchondral bone collagen of the femoral head possessed a 20-fold increase in turnover, as assessed by procollagen rate of synthesis and metalloproteinase degradation, and a 25% decrease in mineralisation. This increased metabolism and high lysyl hydroxylation leads to narrower and weaker fibres. Additionally the phenotypic expression of the osteoblasts is modified to produce increasing proportions of type I homotrimer in addition to the normal type I heterotrimer, which further reduces the mechanical strength of the bone. Overall, the narrow immature collagen fibres, the reduction in pyrrole cross-linking, decreased mineralisation, and increased amounts of type I homotrimer, all contribute to a weakening of the mechanical properties of the subchondral bone. 相似文献
20.
Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. 总被引:3,自引:0,他引:3
Angular dependent Young's modulus E phi presented by Bonfield and Grynpas [Nature 270, 453-454 (1977)] was simulated by using the distribution function of the orientation of mineral in plexiform bone introduced on the basis of an X-ray pole figure analysis (XPFA) and a small angle X-ray scattering (SAXS) results. Calculations were performed with the aid of a simple model which expresses well the geometrical characteristic of plexiform bone. Estimated angular dependent Young's modulus in terms of the distribution of mineral orientation reproduced the experimental results. The suitable aspect ratio of bone mineral for the reproduction of the empirical data was a reasonable value compared with the morphological study of bone mineral. It is concluded that the angular dependence of mechanical properties of plexiform bone is explained by the distribution of bone mineral orientation and its morphology. 相似文献