首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germ cells must safeguard, apportion, package, and deliver their genomes with exquisite precision to ensure proper reproduction and embryonic development. Classical genetic approaches have identified many genes controlling animal germ cell development, but only recently have some of these genes been linked to the RNA interference (RNAi) pathway, a gene silencing mechanism centered on small regulatory RNAs. Germ cells contain microRNAs (miRNAs), endogenous siRNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs); these are bound by members of the Piwi/Argonaute protein family. piwi genes were known to specify germ cell development, but we now understand that mutations disrupting germline development can also affect small RNA accumulation. Small RNA studies in germ cells have revealed a surprising diversity of regulatory mechanisms and a unifying function for germline genes in controlling the spread of transposable elements. Future challenges will be to understand the production of germline small RNAs and to identify the full breadth of gene regulation by these RNAs. Progress in this area will likely impact biomedical goals of manipulating stem cells and preventing diseases caused by the transposition of mobile DNA elements.  相似文献   

2.
Argonaute proteins of the PIWI clade complexed with PIWI-interacting RNAs (piRNAs) protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that combines germline transgenic RNAi, GFP marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only after germ cell cyst formation. Stage-specific RNAi allows us to investigate the role of genes essential for germline cell survival, for example, nuclear RNA export or the SUMOylation pathway, in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit provided by the Vienna Drosophila Resource Center.  相似文献   

3.

Background

Genome-wide RNA interference (RNAi) screening is a very powerful tool for analyzing gene function in vivo in Caenorhabditis elegans. The effectiveness of RNAi varies from gene to gene, however, and neuronally expressed genes are largely refractive to RNAi in wild-type worms.

Results

We found that C. elegans strains carrying mutations in lin-35, the worm ortholog of the tumor suppressor gene p105Rb, or a subset of the genetically related synMuv B family of chromatin-modifying genes, show increased strength and penetrance for many germline, embryonic, and post-embryonic RNAi phenotypes, including neuronal RNAi phenotypes. Mutations in these same genes also enhance somatic transgene silencing via an RNAi-dependent mechanism. Two genes, mes-4 and zfp-1, are required both for the vulval lineage defects resulting from mutations in synMuv B genes and for RNAi, suggesting a common mechanism for the function of synMuv B genes in vulval development and in regulating RNAi. Enhanced RNAi in the germline of lin-35 worms suggests that misexpression of germline genes in somatic cells cannot alone account for the enhanced RNAi observed in this strain.

Conclusion

A worm strain with a null mutation in lin-35 is more sensitive to RNAi than any other previously described single mutant strain, and so will prove very useful for future genome-wide RNAi screens, particularly for identifying genes with neuronal functions. As lin-35 is the worm ortholog of the mammalian tumor suppressor gene p105Rb, misregulation of RNAi may be important during human oncogenesis.  相似文献   

4.
RNA干扰技术(RNAi)是一项高效率、强特异性的基因沉默技术.自1998年发现RNA干扰现象以来,RNAi吸引很多国内外科学家的研究兴趣.经过10多年的潜心研究,现在对该技术的参与成分、作用机理都有了较深入地了解.同时,随着生物学知识的完善和生物技术与基因工程的发展,研究人员时RNAi在基因功能研究、疾病(如肿瘤)相关的基因治疗、新药的研究与开发等方面的应用进行了广泛的探索,并且已经显示该技术的潜在应用价值,但是RNAi的自身缺陷制约了其在临床治疗等方面的实际应用.综述前人的研究结果,系统阐述了RNAi的发生、作用机理、缺陷以及其应用,为相关科学研究提供参考.  相似文献   

5.
6.
SR-protein kinases (SRPKs) and their substrates, serine/arginine-rich pre-mRNA splicing factors, are key components of splicing machinery and are well conserved across phyla. Despite extensive biochemical investigation, the physiological functions of SRPKs remain unclear. In the present study, cDNAs for SPK-1, a C. elegans SRPK homologue, and CeSF2, an SPK-1 substrate, were cloned. SPK-1 binds directly to and phosphorylates the RS domain of CeSF2 in vitro. Both spk-1 and CeSF2 are predominantly expressed in germlines. RNA interference (RNAi) experiments revealed that spk-1 and CeSF2 play an essential role at the embryonic stage of C. elegans. Furthermore, RNAi studies demonstrated that spk-1 is required for germline development in C. elegans. We provide evidence that RNAi, achieved by the soaking of L1 larvae, is beneficial in the study of gene function in post-embryonic germline development.  相似文献   

7.
Sundaram P  Han W  Cohen N  Echalier B  Albin J  Timmons L 《Genetics》2008,178(2):801-814
RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.  相似文献   

8.
Ceramide glucosyltransferase (Ugcg) [uridine diphosphate (UDP)-glucose:N-acylsphingosine D-glucosyltransferase or UDP-glucose ceramide glucosyltransferase (GlcT): EC 2.4.1.80] catalyzes formation of glucosylceramide (GlcCer) from ceramide and UDP-glucose. There is only one Ugcg gene in the mouse genome, which is essential in embryogenesis and brain development. The nematode Caenorhabditis elegans has three Ugcg genes (cgt-1, cgt-2 and cgt-3), and double RNAi of the cgt-1 and cgt-3 genes results in lethality at the L1 larval stage. In this study, we isolated knockout worms for the three genes and characterized the gene functions. Each gene product showed active enzymatic activity when expressed in GM95 cells deficient in glycosphingolipids (GSLs). When each gene function was disrupted, the brood size of the animal markedly decreased, and abnormal oocytes and multinucleated embryos were formed. The CGT-3 protein had the highest Ugcg activity, and knockout of its gene resulted in the severest phenotype. When cgt-3 RNAi was performed on rrf-1 worms lacking somatic RNAi machinery but with intact germline RNAi machinery, a number of abnormal oocytes and multinucleated eggs were observed, although the somatic phenotype, i.e., L1 lethal effects of cgt-1/cgt-3 RNAi, was completely suppressed. Cell surface expression of GSLs and sphingomyelin, which are important components of membrane domains, was affected in the RNAi-treated embryos. In the embryos, an abnormality in cytokinesis was also observed. From these results, we concluded that the Ugcg gene is indispensable in the germline and that an ample supply of GlcCer is needed for oocytes and fertilized eggs to maintain normal membranes and to proceed through the normal cell cycle.  相似文献   

9.
Zhuang JJ  Hunter CP 《Parasitology》2012,139(5):560-573
RNA interference (RNAi) is a powerful research tool that has enabled molecular insights into gene activity, pathway analysis, partial loss-of-function phenotypes, and large-scale genomic discovery of gene function. While RNAi works extremely well in the non-parasitic nematode C. elegans, it is also especially useful in organisms that lack facile genetic analysis. Extensive genetic analysis of the mechanisms, delivery and regulation of RNAi in C. elegans has provided mechanistic and phenomenological insights into why RNAi is so effective in this species. These insights are useful for the testing and development of RNAi in other nematodes, including parasitic nematodes where more effective RNAi would be extremely useful. Here, we review the current advances in C. elegans for RNA delivery methods, regulation of cell autonomous and systemic RNAi phenomena, and implications of enhanced RNAi mutants. These discussions, with a focus on mechanism and cross-species application, provide new perspectives for optimizing RNAi in other species.  相似文献   

10.
The developmental timing of all types of cells must be synchronized and spatially coordinated to achieve the organized development of a multicellular organism. Previously, we found RNAi of asb-1, encoding a germline-specific isoform of mitochondrial ATP synthase b subunit, caused 100% penetrant sterility in Caenorhabditis elegans. ATP synthase is one of the five complexes of the mitochondrial respiratory chain, and defects in some of the components of the chain are known to slow the growth and extend the lifespan of worms. We found that development of asb-1 mutant germ line was not arrested at any stage, but did slow to half the rate of wild type, whereas the rate of somatic development was the same in asb-1 mutants as that of wild type, indicating that asb-1 is required to maintain the rate of germline development but has no effect on somatic development. Among ATP synthase subunit genes, RNAi of asg-1, encoding a germline-specific isoform of the g subunit, also caused asb-1-like sterility, indicating that some other germline-specific components are also required to maintain the rate of germline development. Both asb-1 and asg-1 are located on autosomes while they possess counterparts, asb-2 and asg-2, respectively, on X chromosome, which are both required for somatic development. Chromosomal locations of the genes may be the basis of the segregation of germline/somatic functions of each gene, as were demonstrated for other autosomal/X-linked duplicated gene pairs.  相似文献   

11.
A Stolfi  L Christiaen 《Genetics》2012,192(1):55-66
The experimental malleability and unique phylogenetic position of the sea squirt Ciona intestinalis as part of the sister group to the vertebrates have helped establish these marine chordates as model organisms for the study of developmental genetics and evolution. Here we summarize the tools, techniques, and resources available to the Ciona geneticist, citing examples of studies that employed such strategies in the elucidation of gene function in Ciona. Genetic screens, germline transgenesis, electroporation of plasmid DNA, and microinjection of morpholinos are all routinely employed, and in the near future we expect these to be complemented by targeted mutagenesis, homologous recombination, and RNAi. The genomic resources available will continue to support the design and interpretation of genetic experiments and allow for increasingly sophisticated approaches on a high-throughput, whole-genome scale.  相似文献   

12.
13.
RNA interference (RNAi) is an antiviral mechanism that is activated when double-stranded RNA is cleaved into fragments, called short interfering RNA (siRNA), that prime an inducible gene silencing enzyme complex. We applied RNAi against a herpes simplex virus type 1 (HSV-1) gene, glycoprotein E, which mediates cell-to-cell spread and immune evasion. In an in vitro model of infection, human keratinocytes were transfected with siRNA specific for glycoprotein E and then infected with wild-type HSV-1. RNAi-mediated gene silencing reproduced the small plaque phenotype of a gE-deletion mutant virus. The specificity of gene targeting was demonstrated by flow cytometry and Northern blot analyses. Exogenous siRNA can suppress HSV-1 glycoprotein E expression and function during active infection in vitro through RNAi. This work establishes RNAi as a genetic tool for the study of HSV and provides a foundation for development of RNAi as a novel antiviral therapy.  相似文献   

14.
We identified MRG-1, a Caenorhabditis elegans chromodomain-containing protein that is similar to the human mortality factor-related gene 15 product (MRG15). RNA-mediated interference (RNAi) of mrg-1 resulted in complete absence of the germline in both hermaphrodite and male adults. Examination of the expression of PGL-1, a component of P granules, revealed that two primordial germ cells (PGCs) are produced during embryogenesis in mrg-1(RNAi) animals, but these PGCs cannot undergo mitotic proliferation, and they ultimately degenerate during post-embryonic development. Zygotic RNAi experiments using RNAi-deficient hermaphrodites and wild-type males demonstrated that MRG-1 functions maternally. Moreover, immunoblot analysis using mutant animals with germline deficiencies indicated that MRG-1 is synthesized predominantly in oocytes. These results suggest that MRG-1 is required maternally to form normal PGCs with the potential to start mitotic proliferation during post-embryonic development.  相似文献   

15.
16.
RNA干扰(RNAi)文库研究进展   总被引:2,自引:0,他引:2  
罗彦忠  王磊 《微生物学通报》2010,37(10):1512-1518
RNAi是由双链RNA(dsRNA)引发的转录后基因沉默现象,由dsRNA产生的小分子siRNA会导致生物体内同源转录产物特异性降解,是基因表达调控的重要方式之一。目前RNAi技术已发展成为遗传分析强有力的工具,在基因功能分析鉴定方面发挥越来越大的作用。构建大规模的RNAi文库进而转变成RNAi突变体库是功能基因组学研究的重要手段,因此如何利用简单经济的方法构建特定物种的高效RNAi文库就成为关键问题。综述了目前构建RNAi文库的不同方法以及每种构建方法的优点和存在的不足,为不同研究目的的RNAi文库的构建提供参考。  相似文献   

17.
RNA interference (RNAi)-mediated gene knockdown has developed into a routine method to assess gene function in cultured mammalian cells in a fast and easy manner. For the use of RNAi in mice, short hairpin (sh) RNAs expressed stably from the genome are a fast alternative to conventional knockout approaches. We developed a strategy for complete or conditional gene knockdown in mice, where the Cre/loxP system is used to activate RNAi in a time and tissue dependent manner. Alternatively doxycycline controlled shRNA expression vectors can be used for conditional gene silencing. Single copy RNAi constructs are placed into the Rosa26 locus of ES cells by recombinase mediated cassette exchange and transmitted through the germline of chimeric mice. The shRNA transgenic offspring can be either directly used for phenotypic analysis or are further crossed to a Cre transgenic strain to activate conditional shRNA vectors. The site specific insertion of single copy shRNA vectors allows the expedite and reproducible production of knockdown mice and provides an easy and fast approach to assess gene function in vivo.  相似文献   

18.
A piwi homolog is required for the regulation of stem cells, formation and maintenance of germline stem cells, and gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, both asexually and sexually, and develop and maintain germ cells and sexual organs. They have many pluripotent stem cells (neoblasts) that can differentiate into both somatic and germline stem cells. Thus, we searched for a piwi subfamily in the planarian Dugesia ryukyuensis. Four piwi homologs, identified as Drpiwi-1, -2, -3, and -4, were expressed in sexually reproductive worms. We then selectively destroyed the neoblasts by irradiating the worms with X-rays. In such worms, Drpiwi-1, -2, and -3 were not expressed at all, whereas Drpiwi-4 was expressed to the same degree as that in non-irradiated controls, indicating that Drpiwi-1, -2, and -3, but not Drpiwi-4, are expressed in neoblasts. During the regeneration process, Drpiwi-2(RNAi) and -3(RNAi) worms failed to regenerate after ablation, but Drpiwi-1 and -4(RNAi) worms regenerated. During the sexualizing process, Drpiwi-1(RNAi) worms failed to develop ovaries and testes, but somatic sexual organs were unaffected. Germ cell development was normal in Drpiwi-4(RNAi) worms. Therefore, Drpiwi-2 and -3 may be related to the regulation of neoblasts important for maintaining homeostasis, and Drpiwi-1 is essential for the development of germ cells but not somatic sexual organs. DrPiwi-1 is localized in the cytoplasm of stem cells and germline cells and may be involved in regulating some gene expression. We suggest that planarian Piwi controls germline formation via RNA silencing mechanisms.  相似文献   

19.
RNAi is a widespread mechanism by which organisms regulate gene expression and defend their genomes against viruses and transposable elements. Here we report the identification of Drosophila zucchini (zuc) and squash (squ), which function in germline RNAi processes. Zuc and Squ contain domains with homologies to nucleases. Mutant females are sterile and show dorsoventral patterning defects during oogenesis. In addition, Oskar protein is ectopically expressed in early oocytes, where it is normally silenced by RNAi mechanisms. Zuc and Squ localize to the perinuclear nuage and interact with Aubergine, a PIWI class protein. Mutations in zuc and squ induce the upregulation of Het-A and Tart, two telomere-specific transposable elements, and the expression of Stellate protein in the Drosophila germline. We show that these defects are due to the inability of zuc and squ mutants to produce repeat-associated small interfering RNAs.  相似文献   

20.
Tijsterman M  Pothof J  Plasterk RH 《Genetics》2002,161(2):651-660
Mismatch-repair-deficient mutants were initially recognized as mutation-prone derivatives of bacteria, and later mismatch repair deficiency was found to predispose humans to colon cancers (HNPCC). We generated mismatch-repair-deficient Caenorhabditis elegans by deleting the msh-6 gene and analyzed the fidelity of transmission of genetic information to subsequent generations. msh-6-defective animals show an elevated level of spontaneous mutants in both the male and female germline; also repeated DNA tracts are unstable. To monitor DNA repeat instability in somatic tissue, we developed a sensitive system, making use of heat-shock promoter-driven lacZ transgenes, but with a repeat that puts this reporter gene out of frame. In genetic msh-6-deficient animals lacZ+ patches are observed as a result of somatic repeat instability. RNA interference by feeding wild-type animals dsRNA homologous to msh-2 or msh-6 also resulted in somatic DNA instability, as well as in germline mutagenesis, indicating that one can use C. elegans as a model system to discover genes involved in maintaining DNA stability by large-scale RNAi screens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号