首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bicarbonate is important for pHi control in cardiac cells. It is a major part of the intracellular buffer apparatus, it is a substrate for sarcolemmal acid-equivalent transporters that regulate intracellular pH, and it contributes to the pHo sensitivity of steady-state pHi, a phenomenon that may form part of a whole-body response to acid/base disturbances. Both bicarbonate and H+/OH- transporters participate in the sarcolemmal regulation of pHi, namely Na(+)-HCO3-cotransport (NBC), Cl(-)-HCO3- exchange (i.e., anion exchange, AE), Na(+)-H+ exchange (NHE), and Cl(-)-OH- exchange (CHE). These transporters are coupled functionally through changes of pHi, while pHi is linked to [Ca2+]i through secondary changes in [Na+] mediated by NBC and NHE. Via such coupling, decreases of pHo and pHi can ultimately lead to an elevation of [Ca2+]i, thereby influencing cardiac contractility and electrical rhythm. Bicarbonate is also an essential component of an intracellular carbonic buffer shuttle that diffusively couples cytoplasmic pH to the sarcolemma and minimises the formation of intracellular pH microdomains. The importance of bicarbonate is closely linked to the activity of the enzyme carbonic anhydrase (CA). Without CA activity, intracellular bicarbonate-dependent buffering, membrane bicarbonate transport, and the carbonic shuttle are severely compromised. There is a functional partnership between CA and HCO3- transport. Based on our observations on intracellular acid mobility, we propose that one physiological role for CA is to act as a pH-coupling protein, linking bulk pH to the allosteric H+ control sites on sarcolemmal acid/base transporters.  相似文献   

2.
ABSTRACT: BACKGROUND: In Gallus gallus, eggshell formation takes place daily in the hen uterus and requires large amounts of the ionic precursors for calcium carbonate (CaCO3). Both elements (Ca2+, HCO3-) are supplied by the blood via trans-epithelial transport. Our aims were to identify genes coding for ion transporters that are upregulated in the uterine portion of the oviduct during eggshell calcification, compared to other tissues and other physiological states, and incorporate these proteins into a general model for mineral transfer across the tubular gland cells during eggshell formation. RESULTS: A total of 37 candidate ion transport genes were selected from our database of overexpressed uterine genes associated with eggshell calcification, and by analogy with mammalian transporters. Their uterine expression was compared by qRTPCR in the presence and absence of eggshell formation, and with relative expression levels in magnum (low Ca2+/HCO3- movement) and duodenum (high rates of Ca2+/HCO3- trans-epithelial transfer). We identified overexpression of eleven genes related to calcium movement: the TRPV6 Ca2+ channel (basolateral uptake of Ca2+), 28 kDa calbindin (intracellular Ca2+ buffering), the endoplasmic reticulum type 2 and 3 Ca2+ pumps (ER uptake), and the inositol trisphosphate receptors type 1, 2 and 3 (ER release). Ca2+ movement across the apical membrane likely involves membrane Ca2+ pumps and Ca2+/Na+ exchangers. Our data suggests that Na+ transport involved the SCNN1 channel and the Na+/Ca2+ exchangers SLC8A1, 3 for cell uptake, the Na+/K+ ATPase for cell output. K+ uptake resulted from the Na+/K+ ATPase, and its output from the K+ channels (KCNJ2, 15, 16 and KCNMA1).We propose that the HCO3- is mainly produced from CO2 by the carbonic anhydrase 2 (CA2) and that HCO3- is secreted through the HCO3-/Cl- exchanger SLC26A9. HCO3- synthesis and precipitation with Ca2+ produce two H+. Protons are absorbed via the membrane's Ca2+ pumps ATP2B1, 2 in the apical membrane and the vacuolar (H+)-atpases at the basolateral level. Our model incorporate Cl- ions which are absorbed by the HCO3-/Cl- exchanger SLC26A9 and by Cl- channels (CLCN2, CFTR) and might be extruded by Cl-/H+ exchanger (CLCN5), but also by Na+ K+ 2 Cl- and K+ Cl- cotransporters. CONCLUSIONS: Our Gallus gallus uterine model proposes a large list of ion transfer proteins supplying Ca2+ and HCO3- and maintaining cellular ionic homeostasis. This avian model should contribute towards understanding the mechanisms and regulation for ionic precursors of CaCO3, and provide insight in other species where epithelia transport large amount of calcium or bicarbonate.  相似文献   

3.
Bicarbonate is not freely permeable to membranes. Yet, bicarbonate must be moved across membranes, as part of CO2 metabolism and to regulate cell pH. Mammalian cells ubiquitously express bicarbonate transport proteins to facilitate the transmembrane bicarbonate flux. These bicarbonate transporters, which function by different transport mechanisms, together catalyse transmembrane bicarbonate movement. Recent advances have allowed the identification of several new bicarbonate transporter genes. Bicarbonate transporters cluster into two separate families: (i) the anion exachanger (AE) family of Cl-/HCO3- exchangers is related in sequence to the NBC family of Na+/HCO3- cotransporters and the Na(+)-dependent Cl/HCO3- exchangers and (ii) some members of the SLC26a family of sulfate transporters will also transport bicarbonate but are not related in sequence to the AE/NBC family of transporters. This review summarizes our understanding of the mammalian bicarbonate transporter superfamily.  相似文献   

4.
To allow cells to control their pH and bicarbonate levels, cells express bicarbonate transport proteins that rapidly and selectively move bicarbonate across the plasma membrane. Physical interactions have been identified between the carbonic anhydrase isoform, CAII, and the erythrocyte membrane Cl- /HCO3(-) anion exchanger, AE1, mediated by an acidic motif in the AE1 C-terminus. We have found that the presence of CAII attached to AE1 accelerates AE1 HCO3(-) transport activity, as AE1 moves bicarbonate either into or out of the cell. In efflux mode the presence of CAII attached to AE1 will increase the local concentration of bicarbonate at the AE1 transport site. As bicarbonate is transported into the cell by AE1, the presence of CAII on the cytosolic surface accelerates transport by consumption of bicarbonate, thereby maximizing the transmembrane bicarbonate concentration gradient experienced by the AE1 molecule. Functional and physical interactions also occur between CAII and Na+/HCO3(-) co-transporter isoforms NBC1 and NBC3. All examined bicarbonate transport proteins, except the DRA (SLC26A3) Cl-/HCO3(-) exchange protein, have a consensus CAII binding site in their cytoplasmic C-terminus. Interestingly, CAII does not bind DRA. CAIV is anchored to the extracellular surface of cells via a glycosylphosphatidyl inositol linkage. We have identified extracellular regions of AE1 and NBC1 that directly interact with CAIV, to form a physical complex between the proteins. In summary, bicarbonate transporters directly interact with the CAII and CAIV carbonic anhydrases to increase the transmembrane bicarbonate flux. The complex of a bicarbonate transporter with carbonic anhydrase forms a "Bicarbonate Transport Metabolon."  相似文献   

5.
Bicarbonate excretion in bile is a major function of the biliary epithelium. It is driven by the apically located Cl-/HCO3- exchanger which is functionally coupled with a cAMP-dependent Cl- channel (CFTR). A number of hormones and/or neuropeptides with different mechanisms and at different intracellular levels regulate, in concert, the processes underlying bicarbonate excretion in the biliary epithelium. Secretin induces a bicarbonate rich choleresis by stimulating the activity of the Cl-/HCO3- exchanger by cAMP and protein kinase A mediated phosphorylation of CFTR regulatory domain. Protein phosphatase 1/2A are involved in the run-down of secretory stimulus after secretin removal. Acetylcholine potentiates secretin-choleresis by inducing a Ca(++)-calcineurin mediated "sensitization" of adenyl cyclase to secretin. Bombesin and vasoactive intestinal peptide also enhance the Cl-/HCO3- exchanger activity, but the intracellular signal transduction pathway has not yet been defined. Somatostatin and gastrin inhibit basal and/or secretin-stimulated bicarbonate excretion by down-regulating the secretin receptor and decreasing cAMP intracellular levels induced by secretin.  相似文献   

6.
The Bicarbonate Transport Meeting was held as a satellite meeting of the 53rd Annual Meeting of the Canadian Society of Biochemistry, Molecular and Cellular Biology (CSBMCB): Membrane Proteins in Health and Disease. The meeting covered the modern history of bicarbonate transporter proteins and brought together the major workers in the field. Ron Kopito recounted the story of the first determination of the amino acid sequence for a bicarbonate transporter, AE1/Band 3, 25?years earlier while working with Harvey Lodish at Harvard, while Tomohiro Yamaguchi and Teruhisa Hirai presented up-to-date data on AE1 structure obtained using electron crystallography. The meeting further spanned the spectrum of bicarbonate transporters, with sessions devoted to Cl-/HCO3- exchangers, Na+/HCO3- co-transporters, the link to carbonic anhydrase, and the SLC26 family of bicarbonate transporters expressed broadly in humans, yeast, and bacteria.  相似文献   

7.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

8.
The intracellular pH (pHi) of a rat parotid acinar preparation was monitored using the pH-sensitive fluorescent dye, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Under resting (unstimulated) conditions both Na+/H+ exchange and CO2/HCO3- buffering contribute to the regulation of pHi. Muscarinic stimulation (carbachol) of the acini produced a gradual rise in pHi (approximately 0.1 unit by 10 min) possibly due to activation of the Na+/H+ exchanger. When the exchanger was blocked by amiloride or sodium removal, carbachol induced a dramatic (atropine inhibitable) decrease in pHi (approximately 0.4 pH unit with t1/2 approximately 0.5 min at 1 mM carbachol). The rate of this acidification was reduced by removal of exogenous HCO3- and by the carbonic anhydrase inhibitor methazolamide. Also, acini stimulated with carbachol in Cl- -free solutions showed a more pronounced acidification than in the corresponding Cl- -replete media. Taken together, these data indicate that the carbachol-induced acidification of rat parotid acinar cells unmasked by inhibition of the Na+/H+ exchanger is due to a rapid loss of intracellular HCO3-. Carbachol induced acidification was inhibited by the Cl- channel blocker diphenylamine 2-carboxylate but not by 4-acetomido-4'-isothiocyanostilbene-2,2'-disulfonic acid, an inhibitor of Cl-/HCO3- exchange. In addition, this acidification could not be sustained in Ca2+-free media and was totally blocked by chelation of intracellular Ca2+. Interpreted in terms of HCO3- loss, these results closely parallel the pattern of carbachol-induced Cl- release from this same preparation and indicate that HCO3- is secreted in response to muscarinic stimulation via the same or a very similar exit pathway, presumably an apical anion channel. Under normal physiological conditions the intracellular acidification resulting from HCO3- secretion is buffered by the Na+/H+ exchanger.  相似文献   

9.
The cyanobacterial Na+-dependent HCO3- transporter BicA is a member of the ubiquitous and important SulP/SLC26 family of anion transporters found in eukaryotes and prokaryotes. BicA is an important component of the cyanobacterial CO2 concentrating mechanism, an adaptation that contributes to cyanobacteria being able to achieve an estimated 25% of global primary productivity, largely in the oceans. The human SLC26 members are involved in a range of key cellular functions involving a diverse range of anion transport activities including Cl-/HCO3-, I-/HCO3-, and SO42-/HCO3- exchange; mutations in SLC26 members are known to be associated with debilitating diseases such as Pendred syndrome, chondrodysplasias, and congenital chloride diarrhoea. We have recently experimentally determined the membrane topology of BicA using the phoA-lacZ reporter system and here consider some of the extrapolated implications for topology of the human SLC26 family and the Sultr plant sulphate transporters.  相似文献   

10.
Using the pH-sensitive absorbance of 5 (and 6)-carboxy-4',5'- dimethylfluorescein, we investigated the regulation of cytoplasmic pH (pHi) in monkey kidney epithelial cells (BSC-1). In the absence of HCO3-, pHi is 7.15 +/- 0.1, which is not significantly different from pHi in 28 mM HCO3-, 5% CO2 (7.21 +/- 0.07). After an acid load, the cells regulate pHi in the absence of HCO3- by a Na+ (or Li+)-dependent, amiloride-inhibitable mechanism (indicative of Na+/H+ antiport). In 28 mM HCO3-, while still dependent on Na+, this regulation is only blocked in part by 1 mM amiloride. A partial block is also observed with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (1 mM). With cells pretreated with DIDS, 1 mM amiloride nearly totally inhibits this regulation. Cl- had no effect on pHi regulation in the acidic range. In HCO3(-)-free saline, Na+ removal leads to an amiloride-insensitive acidification, which is dependent on Ca2+. In 28 mM HCO3-, Na+ (and Ca2+) removal led to a pronounced reversible and DIDS-sensitive acidification. When HCO3- was lowered from 46 to 10 mM at constant pCO2 (5%), pHi dropped by a DIDS-sensitive mechanism. Identical changes in pHo (7.6 to 6.9) in the nominal absence of HCO3- led to smaller changes of pHi. In the presence but not in the absence of HCO3-, removal of Cl- led to a DIDS-sensitive alkalinization. This was also observed in the nominal absence of Na+, which leads to a sustained acidification. It is concluded that in nominally bicarbonate-free saline, the amiloride-sensitive Na+/H+ antiport is the predominant mechanism of pHi regulation at acidic pHi, while being relatively inactive at physiological values of pHi. In bicarbonate saline, two other mechanisms effect pHi regulation: a DIDS-sensitive Na+-HCO3- symport, which contributes to cytoplasmic alkalinization, and a DIDS-sensitive Cl-/HCO3- exchange, which is apparently independent of Na+.  相似文献   

11.
Sodium-linked and sodium-independent HCO3-/Cl- antiport was measured under different conditions in a number of cell lines. Transport of HCO3- was estimated from its effect on intracellular pH (pHi) measured with the fluorescent probe 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. The associated ion fluxes were estimated from the transport of 36Cl- and 22Na+. Na+-dependent and Na+-independent HCO3-/Cl- antiport were found in many, but not in all cell lines tested. The Na+-independent HCO3-/Cl- antiport was found to be highly pHi-dependent in a number of cell lines, whereas in others this was not the case. Some cell lines were found to have both Na+-dependent and Na+-independent HCO3-/Cl- antiport, whereas in others we could detect only one of these mechanisms. Na+/H+ antiport, which is quantitatively the most important H+-extruding mechanism, was found in all cell lines tested, but the activity varied strongly. Possible reasons for the qualitative and quantitative differences in antiport activity are discussed.  相似文献   

12.
This study addresses the mechanisms by which a defect in CFTR impairs pancreatic duct bicarbonate secretion in cystic fibrosis. We used control (PANC-1) and CFTR-deficient (CFPAC-1; DeltaF508 mutation) cell lines and measured HCO3- extrusion by the rate of recovery of intracellular pH after an alkaline load and recorded whole cell membrane currents using patch clamp techniques. 1) In PANC-1 cells, cAMP causes parallel activation of Cl- channels and of HCO3- extrusion by DIDS-sensitive and Na+-independent Cl-/HCO3- exchange, both effects being inhibited by Cl- channel blockers NPPB and glibenclamide. 2) In CFPAC-1 cells, cAMP fails to stimulate Cl-/HCO3- exchange and Cl- channels, except after promoting surface expression of DeltaF508-CFTR by glycerol treatment. Instead, raising intracellular Ca2+ concentration to 1 micromol/l or stimulating purinergic receptors with ATP (10 and 100 micromol/l) leads to parallel activation of Cl- channels and HCO3- extrusion. 3) K+ channel function is required for coupling cAMP- and Ca2+-dependent Cl- channel activation to effective stimulation of Cl-/HCO3- exchange in control and CF cells, respectively. It is concluded that stimulation of pancreatic duct bicarbonate secretion via Cl-/HCO3- exchange is directly correlated to activation of apical membrane Cl- channels. Reduced bicarbonate secretion in cystic fibrosis results from defective cAMP-activated Cl- channels. This defect is partially compensated for by an increased sensitivity of CF cells to purinergic stimulation and by alternative activation of Ca2+-dependent Cl- channels, mechanisms of interest with respect to possible treatment of cystic fibrosis and of related chronic pancreatic diseases.  相似文献   

13.
Pancreatic acini loaded with the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to examine the effect of Ca2(+)-mobilizing agonists on the activity of acid-base transporters in these cells. In the accompanying article (Muallen, S., and Loessberg, P. A. (1990) J. Biol. Chem. 265, 12813-12819) we showed that in 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES)-buffered medium the main pHi regulatory mechanism is the Na+/H+ exchanger, a while in HCO3(-)-buffered medium pHi is determined by the combined activities of a Na+/H+ exchanger, a Na(+)-HCO3- cotransporter and a Cl-/HCO3- exchanger. In this study we found that stimulation of acini with Ca2(+)-mobilizing agonists in HEPES or HCO3(-)-buffered media is followed by an initial acidification which is independent of any identified plasma membrane-located acid-base transporting mechanism, and thus may represent intracellularly produced acid. In HEPES-buffered medium there was a subsequent large alkalinization to pHi above that in resting cells, which could be attributed to the Na+/H+ exchanger. Measurements of the rate of recovery from acid load indicated that the Na+/H+ exchanger was stimulated by the agonists. In HCO3(-)-buffered medium the alkalinization observed after the initial acidification was greatly attenuated. Examination of the activity of each acid-base transporting mechanism in stimulated acini showed that in HCO3(-)-buffered medium: (a) recovery from acid load in the presence of H2-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2DIDS) (Na+/H+ exchange) was stimulated similar to that found in HEPES-buffered medium; (b) recovery from acid load in the presence of amiloride and acidification due to removal of external Na+ in the presence of amiloride (HCO3- influx and efflux, respectively, by Na(+)-HCO3- cotransport) were inhibited; and (c) HCO3- influx and efflux due to Cl-/HCO3- exchange, which was measured by changing the Cl- or HCO3- gradients across the plasma membrane, were stimulated. Furthermore, the rate of Cl-/HCO3- exchange in stimulated acini was higher than the sum of H+ efflux due to Na+/H+ exchange and HCO3- influx due to Na(+)-HCO3- cotransport. Use of H2DIDS showed that the latter accounted for the attenuated changes in pHi in HCO3(-)-buffered medium, as much as treating the acini with H2DIDS resulted in similar agonist-mediated pHi changes in HEPES- and HCO3(-)-buffered media. The effect of agonists on the various acid-base transporting mechanisms is discussed in terms of their possible role in transcellular NaCl transport, cell volume regulation, and cell proliferation in pancreatic acini.  相似文献   

14.
Measurements of cytosolic pH (pHi) 36Cl fluxes and free cytosolic Ca2+ concentration ([Ca2+]i) were performed in the clonal osteosarcoma cell line UMR-106 to characterize the kinetic properties of Cl-/HCO3- (OH-) exchange and its regulation by pHi and [Ca2+]i. Suspending cells in Cl(-)-free medium resulted in rapid cytosolic alkalinization from pHi 7.05 to approximately 7.42. Subsequently, the cytosol acidified to pHi 7.31. Extracellular HCO3- increased the rate and extent of cytosolic alkalinization and prevented the secondary acidification. Suspending alkalinized and Cl(-)-depleted cells in Cl(-)-containing solutions resulted in cytosolic acidification. All these pHi changes were inhibited by 4',4',-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) and H2DIDS, and were not affected by manipulation of the membrane potential. The pattern of extracellular Cl- dependency of the exchange process suggests that Cl- ions interact with a single saturable external site and HCO3- (OH-) complete with Cl- for binding to this site. The dependencies of both net anion exchange and Cl- self-exchange fluxes on pHi did not follow simple saturation kinetics. These findings suggest that the anion exchanger is regulated by intracellular HCO3- (OH-). A rise in [Ca2+]i, whether induced by stimulation of protein kinase C-activated Ca2+ channels, Ca2+ ionophore, or depolarization of the plasma membrane, resulted in cytosolic acidification with subsequent recovery from acidification. The Ca2+-activated acidification required the presence of Cl- in the medium, could be blocked by DIDS, and H2DIDS and was independent of the membrane potential. The subsequent recovery from acidification was absolutely dependent on the initial acidification, required the presence of Na+ in the medium, and was blocked by amiloride. Activation of protein kinase C without a change in [Ca2+]i did not alter pHi. Likewise, in H2DIDS-treated cells and in the absence of Cl-, an increase in [Ca2+]i did not activate the Na+/H+ exchanger in UMR-106 cells. These findings indicate that an increase in [Ca2+]i was sufficient to activate the Cl-/HCO3- exchanger, which results in the acidification of the cytosol. The accumulated H+ in the cytosol activated the Na+/H+ exchanger. Kinetic analysis of the anion exchange showed that at saturating intracellular OH-, a [Ca2+]i increase did not modify the properties of the extracellular site. A rise in [Ca2+]i increased the apparent affinity for intracellular OH- (or HCO3-) of both net anion and Cl- self exchange. These results indicate that [Ca2+]i modifies the interaction of intracellular OH- (or HCO3-) with the proposed regulatory site of the anion exchanger in UMR-106 cells.  相似文献   

15.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

16.
Alvarez BV  Vilas GL  Casey JR 《The EMBO journal》2005,24(14):2499-2511
Carbonic anhydrases (CA) catalyze the reversible conversion of CO2 to HCO3-. Some bicarbonate transporters bind CA, forming a complex called a transport metabolon, to maximize the coupled catalytic/transport flux. SLC26A6, a plasma membrane Cl-/HCO3- exchanger with a suggested role in pancreatic HCO3- secretion, was found to bind the cytoplasmic enzyme CAII. Mutation of the identified CAII binding (CAB) site greatly reduced SLC26A6 activity, demonstrating the importance of the interaction. Regulation of SLC26A6 bicarbonate transport by protein kinase C (PKC) was investigated. Angiotensin II (AngII), which activates PKC, decreased Cl-/HCO3- exchange in cells coexpressing SLC26A6 and AT1a-AngII receptor. Activation of PKC reduced SLC26A6/CAII association in immunoprecipitates. Similarly, PKC activation displaced CAII from the plasma membrane, as monitored by immunofluorescence. Finally, mutation of a PKC site adjacent to the SLC26A6 CAB site rendered the transporter unresponsive to PKC. PKC therefore reduces CAII/SLC26A6 interaction, reducing bicarbonate transport rate. Taken together, our data support a mechanism for acute regulation of membrane transport: metabolon disruption.  相似文献   

17.
Hypoxic pulmonary vasoconstriction (HPV) occurs in smooth muscle cells (SMC) from small pulmonary arteries (SPA) and is accompanied by increases in free cytoplasmic calcium ([Ca2+]i) and cytoplasmic pH (pHi). SMC from large pulmonary arteries (LPA) relax during hypoxia, and [Ca2+]i and pHi decrease. Increases in pHi and [Ca2+]i in cat SPA SMC during hypoxia and the augmentation of hypoxic pulmonary vasoconstriction by alkalosis seen in isolated arteries and lungs suggest that cellular mechanisms, which regulate inward and outward movement of Ca2+ and H+, may participate in the generation of HPV. SMC transport systems that regulate pHi include the Na+ - H+ transporter which regulates intracellular Na+ and H+ and aids in recovery from acid loads, and the Na+ -dependent and Na+ -independent Cl-/HCO3- transporters which regulate intracellular chloride. The Na+ -dependent Cl-/HCO3- transporter also aids in recovery from acidosis in the presence of CO2 and HCO3-. The Na+ -independent Cl-/HCO3- transporter aids in recovery from cellular alkalosis. The Na+ - H+ transporter was present in SMC from SPA and LPA of the cat, but it seemed to have little if any role in regulating pHi in the presence of CO2 and HCO3-. Inhibiting the Cl-/HCO3- transporters reversed the normal direction of pHi change during hypoxia, suggesting a role for these transporters in the hypoxic response. Future studies to determine the interaction between pHi, [Ca2+]i and HPV should ascertain whether pHi and [Ca2+]i changes are linked and how they may interact to promote or inhibit SMC contraction.  相似文献   

18.
Recent studies suggest that the major pathway for exit of HCO3- across the basolateral membrane of the proximal tubule cell is electrogenic Na+/HCO3- co-transport. We therefore evaluated the possible presence of Na+/HCO3- co-transport in basolateral membrane vesicles isolated from the rabbit renal cortex. Imposing an inward HCO3- gradient induced the transient uphill accumulation of Na+, and imposing an outward Na+ gradient caused HCO3- -dependent generation of an inside-acid pH gradient as monitored by quenching of acridine orange fluorescence, findings consistent with the presence of Na+/HCO3- co-transport. In the absence of other driving forces, generating an inside-positive membrane potential by imposing an inward K+ gradient in the presence of valinomycin caused net Na+ uptake via a HCO3- -dependent pathway, indicating that Na+/HCO3- co-transport is electrogenic and associated with a flow of negative charge. Imposing transmembrane Cl- gradients did not appreciably affect HCO3- gradient-stimulated Na+ influx, suggesting that Na+/HCO3- co-transport is not Cl- -dependent. The rate of HCO3- gradient-stimulated Na+ influx was a simple, saturable function of the Na+ concentration (Km = 9.7 mM, Vmax = 160 nmol/min/mg of protein), was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (I50 = 100 microM), but was inhibited less than 10% by up to 1 mM amiloride. We could not demonstrate a HCO3- -dependent or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive component of Na+ influx in microvillus membrane vesicles. This study thus indicates the presence of a transport system mediating electrogenic Na+/HCO3- co-transport in basolateral, but not luminal, membrane vesicles isolated from the rabbit renal cortex. Analogous to the use of renal microvillus membrane vesicles to study Na+/H+ exchange, renal basolateral membrane vesicles may be a useful model system for examining the kinetics and possible regulation of Na+/HCO3- co-transport.  相似文献   

19.
The regulation of intracellular pH (pHi) in rat sublingual mucous acini was monitored using dual-wavelength microfluorometry of the pH-sensitive dye BCECF (2',7'-biscarboxyethyl-5(6)-carboxyfluorescein). Acini attached to coverslips and continuously superfused with HCO3(-)-containing medium (25 mM NaHCO3/5% CO2; pH 7.4) have a steady-state pHi of 7.25 +/- 0.02. Acid loading of acinar cells using the NH4+/NH3 prepulse technique resulted in a Na(+)-dependent, MIBA-inhibitable (5-(N-methyl-N-isobutyl) amiloride, Ki approximately 0.42 microM) pHi recovery, the kinetics of which were not influenced by the absence of extracellular Cl-. The rate and magnitude of the pHi recovery were dependent on the extracellular Na+ concentration, indicating that Na+/H+ exchange plays a critical role in maintaining pHi above the pH predicted for electrochemical equilibrium. When the NH4+/NH3 concentration was varied, the rate of pHi recovery was enhanced as the extent of the intracellular acidification increased, demonstrating that the activity of the Na+/H+ exchanger is regulated by the concentration of intracellular protons. Switching BCECF-loaded acini to a Cl(-)-free medium did not significantly alter resting pHi, suggesting the absence of Cl-/HCO3- exchange activity. Muscarinic stimulation resulted in a rapid and sustained cytosolic acidification (t 1/2 < 30 sec; 0.16 +/- 0.02 pH unit), the magnitude of which was amplified greater than two-fold in the presence of MIBA (0.37 +/- 0.05 pH unit) or in the absence of extracellular Na+ (0.34 +/- 0.03 pH unit). The agonist-induced intracellular acidification was blunted in HCO3(-)-free media and was inhibited by DPC (diphenylamine-2-carboxylate), an anion channel blocker. In contrast, the acidification was not influenced by removal of extracellular Cl-. The Ca2+ ionophore, ionomycin, mimicked the effects of stimulation, whereas preloading acini with BAPTA (bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid) to chelate intracellular Ca2+ blocked the agonist-induced cytoplasmic acidification. The above results indicate that during muscarinic stimulation an intracellular acidification occurs which: (i) is partially buffered by increased Na+/H+ exchange activity; (ii) is most likely mediated by HCO3- efflux via an anion channel; and (iii) requires an increase in cytosolic free [Ca2+].  相似文献   

20.
We previously reported that, in a HCO3(-)-free medium, cytoplasmic pH (pHi) of hamster fibroblasts (CCL39) is primarily regulated by an amiloride-sensitive Na+/H+ antiport (L'Allemain, G., Paris, S., and Pouysségur, J. (1984) J. Biol. Chem. 259, 5809-5815). Here we demonstrate the existence of an additional pHi-regulating mechanism in CCL39 cells, namely a Na+-dependent HCO3-/Cl- exchange. Evidence for this system is based on 36Cl- influx studies and on pHi measurements in PS120, a CCL39-derived mutant lacking the Na+/H+ antiport activity. 36Cl- influx rate is a saturable function of external [Cl-] (apparent Km approximately equal to 7 mM), is competitively inhibited by external HCO3- (KI approximately equal to 3 mM), and by stilbene derivatives (KI approximately equal to 20 microM for 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). Measurements of pHi recovery after an acute acid load indicate that PS120 cells possess an acid-extruding mechanism dependent on external HCO3-, which is inhibited by stilbene derivatives and requires external Na+. Since 22Na+ influx is stimulated upon addition of HCO3- to acid-loaded cells and this effect is completely abolished by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, we conclude that Na+ is co-transported with HCO3-, in exchange for intracellular Cl-. In a HCO3(-)-containing medium, this pHi-regulating mechanism appears to have two essential physiological functions for the Na+/H+ antiport-deficient mutant: protection of the cells against excessive cytoplasmic acidification and establishment of a steady-state pHi permissive for growth, at neutral or slightly acidic pHo values (6.6-7.2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号