首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to verify the validity of the assumption that male urinary Prostaglandin (PG) E2 reflects its renal production, PGE2 and PGF concentrations were measured by radioimmunoassay in the renal venous plasma (RVP) and urine (U) of 12 male and 4 female healthy volunteers. While women had a similar PGE2/PGF ratio in RVP (0.59 ± 0.18) and U (0.41 ± 0.06), men had a significantly (p< 0.05) higher ratio in U (1.43 ± 1.72) as compared to RVP (0.54 ± 0.16). This was largely due to considerably higher and more variable U-PGE2 concentrations (roughly 6 times higher than female values), despite almost identical RVP levels. The possibility of an increased U excretion of a cross-reacting member of the PG-system, as a cuase of such apparently high PGE2-like immunoreactivity (LI), was ruled out by TLC characterization of PGE2-LI with three different anti-PGE2 sera. Thus, male U-PGE2 may variably reflect an extra-renal source, such as contamination with trace amounts of seminal fluid. It is concluded that, unless such a contamination can be monitored and corrected for, measurement of male U-PGE2 should be considered of questionable relevance to renal PG-synthesis.  相似文献   

2.
Radioimmunoassay measurements of prostaglandins (PGs) E2, F2 alpha, 6-keto-PGF1 alpha and thromboxane (Tx) B2 in 24 h urine specimens from a male and a female healthy volunteer on several consecutive days revealed a dramatic increase of PGE2, PGF2 alpha, 6-keto-PGF1 alpha on days, upon which they had sexual intercourse; only TxB2 remained stable. Furthermore, the PGE2/PGF2 alpha ratio rose to values greater than 0.5 on days with sexual intercourse. This was found to be due to contamination of the urine samples by seminal fluid. Two 24 h urine samples from each of 26 healthy male and female volunteers (HV) revealed higher (p less than 0.01) mean PGE2 and PGF2 alpha values in males than in females. The results show that the interpretation of the urinary PG excretion as a measure of renal PG synthesis should be considered carefully, and that a PGE2/PGF2 alpha ratio greater than 0.5 indicates probable seminal contamination of urine.  相似文献   

3.
The present study was designed to clarify the possible role of renal prostaglandins (PGs) on blood pressure (BP) regulation during calcium (Ca) restriction or supplementation. Twelve normotensive women with a mean age of 21.2 years participated in the study. After 1 week of normal Ca intake (mean +/- SE, 536 +/- 2 mg/day), a low-Ca diet (163 +/- 1 mg/day) was given for a further 1 week. Additional asparagine Ca (3 g as Ca/day) was also given to half of the subjects. BP, heart rate, and serum total and ionized Ca concentrations were measured at the end of each period. Levels of Ca, sodium, PGE2, 6-keto-PGF1 alpha and thromboxane (TX) B2 excreted into urine were also determined. The plasma level of ionized Ca was significantly increased without any change in total Ca in both groups. Low and high Ca intake decreased and increased urinary Ca excretion by 28% and 56%, respectively. BP was not altered after Ca deprivation or loading. However, urinary PGE2 excretion was significantly augmented from 668.9 +/- 68.1 to 959.7 +/- 183.1 ng/day by Ca loading, whereas Ca deprivation decreased PGE2 excretion (695.4 +/- 108.1 to 513.2 +/- 55.2 ng/day). No changes were observed in 6-keto-PGF1 alpha or TXB2 urinary excretion. These results suggest that renal PGE2 synthesis is stimulated or decreased by 1-week Ca loading or deprivation, indicating a possible antihypertensive role of renal PGE2 during high-Ca intake in hypertensives.  相似文献   

4.
The effects of prostaglandins (PGs) E1 (PGE1), E2 (PGE2) and F2 alpha (PGF2 alpha) on cyclic 3',5'-adenosine monophosphate (cAMP) production and intracellular Ca mobilization were examined in smooth muscle cells of chicken uterus grown in primary culture. At subnanomolar concentrations, both PGE1 and PGE2 significantly suppressed cAMP levels. However, at higher concentrations (0.1-100 microM), both agonists caused a dose-related increase in cAMP production. PGF2 alpha, on the other hand, had no effect on cAMP production. Forskolin (1-100 microM), which also stimulated cAMP production in a dose-dependent fashion, potentiated the effects of both PGE1 and PGE2. In digitonin-permeabilized uterine cells preloaded with 45Ca2+, the addition of PGF2 alpha caused a biphasic 45Ca2+ efflux. There was a small but significant 45Ca2+ release (10.0 +/- 1.5%) within 30 s (rapid phase), followed by a larger one (32.0 +/- 2.0%) within 5 min (slow phase). PGE2, at doses above 1 nM (which significantly increased cAMP accumulation), promoted 45Ca2+ sequestration. This action of PGE2 was observed as early as 1 min and was complete by 5 min. In addition, 0.001 nM PGE2 (a dose that was ineffective on 45Ca2+ mobilization) enhanced PGF2 alpha-induced 45Ca2+ mobilization from 22.5 +/- 5% to 57.0 +/- 3.5%. These results show that PGs of the E series have distinctly different effects on cAMP production and intracellular Ca mobilization. PGF2 alpha action may be linked directly to intracellular Ca mobilization, whereas the effects of PGE may be exerted at multiple sites depending on its local concentration. At low concentrations, its action may be mediated by the suppression of cAMP levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Prostaglandin E2 (PGE2), thromboxane B2 (TXB2; as a stable metabolite of TXA2), prostaglandin F2 alpha (PGF2 alpha) and 6-keto-PGF1 alpha (as a stable end product of prostacyclin) have been measured by using specific radioimmunoassay in the plasma of the cord artery immediately after delivery before the cord was clamped. Plasma prostanoid concentrations in normal deliveries (n = 8, as controls) were 24.8 +/- 2.6 (PGE2), 246.8 +/- 37.0 (TXB2), 122.2 +/- 13.3 (PGF2 alpha) and 82.1 +/- 7.7 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e). On the other hand, in fetal distressed deliveries showing continuous bradycardia (n = 6), they increased significantly to 275.4 +/- 20.1 (PGE2), 948.6 +/- 102.5 (TXB2), 218.0 +/- 21.4 (PGF2 alpha) and 1498.6 +/- 298.4 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e, p less than 0.005). However, both PGF2 alpha/PGE2 and TXB2/6-keto-PGF1 alpha ratios declined significantly from 4.70 +/- 0.33 to 0.68 +/- 0.05 and from 3.07 +/- 0.37 to 0.68 +/- 0.12 respectively (mean +/- s.e, p less than 0.005) in the fetal distressed group compared with those of the controls. From these results, it may be concluded that the cord artery, which is known as the patent source for the production of PGE2 and prostacyclin, did exert a sufficiently strong reaction to overcome the undesirable haemodynamic changes to maintain the fetal well-being in utero.  相似文献   

6.
ROMK null mice with a high survival rate and varying severity of hydronephrosis provide a good model to study type II Bartter syndrome pathophysiology (26). During the development of such a colony, we found that more male than female null mice survived, 58.7% vs. 33.3%. To investigate the possible mechanism of this difference, we compared the survival rates, renal functions, degree of hydronephrosis, as well as PGE(2) and TXB(2) production between male and female ROMK wild-type and null mice. We observed that female ROMK Bartter's mice exhibited lower GFR (0.37 vs. 0.54 ml.min(-1).100 g BW(-1), P < 0.05) and higher fractional Na(+) excretion (0.66% vs. 0.48%, P < 0.05) than male Bartter's. No significant differences in acid-base parameters, urinary K(+) excretion, and plasma electrolyte concentrations were observed between sexes. In addition, we assessed the liquid retention rate in the kidney to evaluate the extent of hydronephrosis and observed that 67% of male and 90% of female ROMK null mice were hydronephrotic mice. Urinary PGE(2) excretion was higher in both sexes of ROMK null mice: 1.35 vs. 1.10 ng/24 h in males and 2.90 vs. 0.87 ng/24 h in females. TXB(2) excretion was higher in female mice in both wild-type and ROMK null mice. The increments of urinary PGE(2) and TXB(2) were significantly higher in female null mice than males, 233.33% vs. 22.74% of PGE(2) and 85.67% vs. 20.36% of TXB(2). These data demonstrate a more severe Bartter phenotype in female ROMK null mice, and higher PGE(2) and TXB(2) production may be one of the mechanisms of this manifestation.  相似文献   

7.
Increasing renal pelvic pressure results in PGE(2)-mediated release of substance P. Substance P increases afferent renal nerve activity (ARNA), which leads to a reflex increase in urinary sodium excretion (U(Na)V). Endogenous ANG II modulates the responsiveness of renal mechanosensory nerves. The ARNA and U(Na)V responses are suppressed by low- and enhanced by high-sodium diet. We examined whether the ARNA responses are altered in rats with congestive heart failure (CHF), a condition characterized by increased ANG II and sodium retention. The ARNA responses to increasing renal pelvic pressure 相似文献   

8.
Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA). To test whether the ERSNA-induced increases in ARNA involved norepinephrine activating alpha-adrenoceptors on the renal sensory nerves, we examined the effects of renal pelvic administration of the alpha(1)- and alpha(2)-adrenoceptor antagonists prazosin and rauwolscine on the ARNA responses to reflex increases in ERSNA (placing the rat's tail in 49 degrees C water) and renal pelvic perfusion with norepinephrine in anesthetized rats. Hot tail increased ERSNA and ARNA, 6,930 +/- 900 and 4,870 +/- 670%.s (area under the curve ARNA vs. time). Renal pelvic perfusion with norepinephrine increased ARNA 1,870 +/- 210%.s. Immunohistochemical studies showed that the sympathetic and sensory nerves were closely related in the pelvic wall. Renal pelvic perfusion with prazosin blocked and rauwolscine enhanced the ARNA responses to reflex increases in ERSNA and norepinephrine. Studies in a denervated renal pelvic wall preparation showed that norepinephrine increased substance P release, from 8 +/- 1 to 16 +/- 1 pg/min, and PGE(2) release, from 77 +/- 11 to 161 +/- 23 pg/min, suggesting a role for PGE(2) in the norepinephrine-induced activation of renal sensory nerves. Prazosin and indomethacin reduced and rauwolscine enhanced the norepinephrine-induced increases in substance P and PGE(2). PGE(2) enhanced the norepinephrine-induced activation of renal sensory nerves by stimulation of EP4 receptors. Interaction between ERSNA and ARNA is modulated by norepinephrine, which increases and decreases the activation of the renal sensory nerves by stimulating alpha(1)- and alpha(2)-adrenoceptors, respectively, on the renal pelvic sensory nerve fibers. Norepinephrine-induced activation of the sensory nerves is dependent on renal pelvic synthesis/release of PGE(2).  相似文献   

9.
Stretching the renal pelvic wall activates renal mechanosensory nerves by a PGE2-mediated release of substance P via activation of the cAMP-PKA pathway. Renal pelvic ANG II modulates the responsiveness of renal sensory nerves by suppressing the PGE2-mediated activation of adenylyl cyclase via a pertussis toxin (PTX)-sensitive mechanism. In SHR, activation of renal mechanosensory nerves is impaired. This is due to suppressed release of substance P in response to increased pelvic pressure. The present study was performed to investigate whether the PGE2-mediated release of substance P was suppressed in SHR vs. WKY and, if so, whether the impaired PGE2-mediated release of substance P was due to ANG II activating a PTX-sensitive mechanism. In an isolated renal pelvic wall preparation, PGE2, 0.14 microM, increased substance P release from 9 +/- 3 to 22 +/- 3 pg/min (P < 0.01) in Wistar-Kyoto rats (WKY), but had no effect in spontaneously hypertensive rats (SHR). A tenfold higher concentration of PGE2, 1.4 microM, was required to increase substance P release in SHR, from 7 +/- 1 to 22 +/- 3 pg/min (P < 0.01). In SHR, treating renal pelvises with losartan enhanced the release of substance P produced by subthreshold concentration of PGE2, 0.3 microM, from 16 +/- 2 to 26 +/- 3 pg/min (P < 0.01). Likewise, treating renal pelvises with PTX enhanced the PGE2-mediated release of substance P from 10 +/- 1 to 33 +/- 3 pg/min (P < 0.01) in SHR. In WKY, neither losartan nor PTX had an effect on the release of substance P produced by subthreshold concentrations of PGE2, 0.03 microM. In conclusion, the impaired responsiveness of renal sensory nerves in SHR involves endogenous ANG II suppressing the PGE2-mediated release of substance P via a PTX-sensitive mechanism.  相似文献   

10.
Urinary PGE(2) concentrations were assayed using a new EIA method, in 16 preterm and 18 term neonates at birth and 3 days later, since there is evidence that PGE(2) in urine are likely to reflect their renal generation and then could be correlated with kidney maturation or renal problems. PGE(2) concentrations were not different at birth (1.50+/-1.12 vs 1.56+/-1.94 ng/day), while resulted significantly higher in preterms, compared to terms, three days after birth (2.22+/-1.23 vs 1.39+/-0.79 ng/day). This increase in daily PGE(2) excretion observed only in preterm neonates could be due to an increased renal biosynthesis as a mechanism of compensatory response to prevent further decrements in renal plasma flow, since prostanoids play an important role in protecting the immature kidney from high levels of angiotensin II. Otherwise, the passive reabsorption of PGE(2) along the distal nephron could be altered because of kidney immaturity. The measurement of PGE(2) in urine of neonates, particularly prematures, could be useful to provide a better understanding of the homeostatic function of the kidney in the phase of adaptation to extra-uterine life.  相似文献   

11.
The present study was designed to determine urinary excretion of kallikrein(KAL)-kinin as well as prostaglandin (PG) E2, TXB2 and 2,3-dinor-TXB2, a major urinary metabolite of TXA2 synthesized in platelets, by specific RIAs in patients with diabetes mellitus (DM). KAL or kinin excretion in 26 type II DM did not differ from control values obtained in 18 age-matched healthy subjects (C), although DM with HbA1 greater than 11% excreted less KAL. Urinary PGE2 excretion (7.6 +/- 2.8 ng/mg creatinine, mean +/- SE) was significantly lower in DM compared to C (17.5 +/- 3.9, p less than 0.05), while DM excreted more TXB2 (0.57 +/- 0.09, p less than 0.01) and 2,3-dinor-TXB2 (0.56 +/- 0.12, N.S.) than C (0.19 +/- 0.02 or 0.33 +/- 0.01). DM with or without mild proteinuria demonstrated lower PGE2, but higher TXB2 and 2,3-dinor-TXB2 excretion. A positive correlation of TXB2/2,3-dinor-TXB2 with proteinuria was observed in this group. However, in DM with massive proteinuria over 500 micrograms/mg creatinine, TXB2 and 2,3-dinor-TXB2 excretion decreased to levels almost identical to C. As a whole, a ratio of TXB2 to PGE2 or 2,3-dinor-TXB2 in DM was significantly higher than in C. The results suggest that a relative preponderance of TXB2 to 2,3-dinor-TXB2 may indicate an augmented renal, in addition to platelet, TXA2 synthesis. An excessive vasoconstrictive and proaggregatory TXA2 renal synthesis, concomitant with a decrease in vasodilatory and antiaggregatory PGE2, may have profound effects on renal functions such as protein excretion in DM.  相似文献   

12.
Uteroplacental production of eicosanoids in ovine pregnancy   总被引:3,自引:0,他引:3  
Dramatic cardiovascular alterations occur during normal ovine pregnancy which may be associated with increased prostaglandin production, especially of uteroplacental origin. To study this, we examined (Exp 1) the relationships between cardiovascular alterations, e.g., the rise in uterine blood flow and fall in systemic vascular resistance, and arterial concentrations of prostaglandin metabolites (PGEM, PGFM and 6-keto-PGF1 alpha) in nonpregnant (n = 4) and pregnant (n = 8) ewes. To determine the potential utero-placental contribution of these eicosanoids in pregnancy, we also studied (Exp 2) the relationship between uterine blood flow and the uterine venous-arterial concentration differences of PGE2, PGF2 alpha, PGFM, 6-keto-PGF1 alpha, and TxB2 in twelve additional late pregnant ewes. Pregnancy was associated with a 37-fold increase in uterine blood flow and a proportionate (27-fold) fall in uterine vascular resistance (p less than 0.01). Arterial concentrations of PGEM were similar in nonpregnant and pregnant ewes (316 +/- 19 and 245 +/- 38 pg/ml), while levels of PGFM and PGI2 metabolite 6-keto-PGF1 alpha were elevated 23-fold (31 +/- 14 to 708 +/- 244 pg/ml) and 14-fold (12 +/- 4 to 163 +/- 78 pg/ml), respectively (p less than 0.01). Higher uterine venous versus uterine arterial concentrations were observed for PGE2 (397 +/- 36 and 293 +/- 22 pg/ml) and 6-keto-PGF1 alpha (269 +/- 32 and 204 +/- 32 pg/ml), p less than 0.05, but not PGF2 alpha or TxB2. Although PGFM concentrations appeared to be greater in uterine venous (1197 +/- 225 pg/ml) as compared to uterine arterial (738 +/- 150 pg/ml) plasma, this did not reach significance (0.05 less than p less than 0.1). In normal ovine pregnancy arterial levels of PGI2 are increased, which may in part reflect increased uteroplacental production. Moreover the gravid ovine uterus also appears to produce PGE2 and metabolize PGF2 alpha.  相似文献   

13.
I Mucha  G Losonczy 《Prostaglandins》1990,40(2):143-153
Arterial levels of 13,14-dihydro-15-keto-PGE2 (PGE2-M), a stable metabolite of prostaglandin E2 (PGE2) were compared between unanesthetized pregnant (n = 12) and nonpregnant (n = 8) rabbits with the aim of elucidating the role PGE2 in the development of physiological hypotension associated with pregnancy. On the 20th and 22nd days of the 30 day gestation period the mean arterial concentrations of PGE2-M were about 10-times higher (p less than 0.05) and largely variable as compared to that of nonpregnant rabbits. Mean arterial pressure was not lower on either the 20th (69 +/- 4 mmHg, mean +/- SD) or the 22nd (70 +/- 3 mmHg) days of gestation (dg) than in nonpregnant rabbits (69 +/- 4 and 73 +/- 6 mmHg, respectively). On the 23rd dg hypotension was invariably present (61 +/- 5 mmHg vs 72 +/- 4 in nonpregnants, p less than 0.001), but arterial levels of PGE2-M (31.0 +/- 31.6 ng/ml) did not overcome those measured on earlier, normotensive days of gestation. Hypotension was also evident in a subgroup of pregnant rabbits (n = 4) with low PGE2-M concentrations in the nonpregnant range (3.2 +/- 1.5 ng/ml vs 1.9 +/- 1.2 in nonpregnant rabbits, ns). Since the arterial level of PGE2-M proved to correlate (p less than 0.001) with both the uteroplacental venous and renal venous PGE2 concentrations, we suggest that a key role of uteroplacental and renal PGE2 played in the development of gestational hypotension is not probable in rabbits.  相似文献   

14.
The kidney plays a central role in long-term regulation of arterial blood pressure and salt and water homeostasis. This is achieved in part by the local actions of paracrine and autacoid mediators such as the arachidonic acid-prostanoid system. The present study tested the role of specific PGE(2) E-prostanoid (EP) receptors in the regulation of renal hemodynamics and vascular reactivity to PGE(2). Specifically, we determined the extent to which the EP(2) and EP(3) receptor subtypes mediate the actions of PGE(2) on renal vascular tone. Renal blood flow (RBF) was measured by ultrasonic flowmetry, whereas vasoactive agents were injected directly into the renal artery of male mice. Studies were performed on two independent mouse lines lacking either EP(2) or EP(3) (-/-) receptors and the results were compared with wild-type controls (+/+). Our results do not support a unique role of the EP(2) receptor in regulating overall renal hemodynamics. Baseline renal hemodynamics in EP(2)-/- mice [RBF EP(2)-/-: 5.3 +/- 0.8 ml. min(-1). 100 g kidney wt(-1); renal vascular resistance (RVR) 19.7 +/- 3.6 mmHg. ml(-1). min. g kidney wt] did not differ statistically from control mice (RBF +/+: 4.0 +/- 0.5 ml. min(-1). 100 g kidney wt(-1); RVR +/+: 25.4 +/- 4.9 mmHg. ml(-1). min. 100 g kidney wt(-1)). This was also the case for the peak RBF increase after local PGE(2) (500 ng) injection into the renal artery (EP(2)-/-: 116 +/- 4 vs. +/+: 112 +/- 2% baseline RBF). In contrast, we found that the absence of EP(3) receptors in EP(3)-/- mice caused a significant increase (43%) in basal RBF (7.9 +/- 0.8 ml. min(-1). g kidney wt(-1), P < 0.05 vs. +/+) and a significant decrease (41%) in resting RVR (11.6 +/- 1.4 mmHg. ml(-1). min. g kidney wt(-1), P < 0.05 vs. +/+). Local administration of 500 ng of PGE(2) into the renal artery caused more pronounced renal vasodilation in EP(3)-/- mice (128 +/- 2% of basal RBF, P < 0.05 vs. +/+). We conclude that EP(3 )receptors mediate vasoconstriction in the kidney of male mice and its actions are tonically active in the basal state. Furthermore, EP(3) receptors are capable of buffering PGE(2)-mediated renal vasodilation.  相似文献   

15.
The effect of exogenous melatonin on prostaglandin secretion was measured on Rasa Aragonesa ewes. Fourteen ewes received an 18 mg melatonin implant (M+) on 10 April and were compared with 13 control animals (without implants M-). Twenty days later, intravaginal pessaries were inserted in all animals to induce a synchronized oestrus (day 0). On day 14, ewes were injected, i.v., with 0.5 IU oxytocin. Plasma 15-ketodihydro-PGF(2alpha) (PGFM) concentrations were measured to assess uterine secretory responsiveness to oxytocin. After euthanasia, pieces of endometrium were collected to determine progesterone content and PGE(2) and PGF(2alpha) secretion in vitro, in the presence or absence of either 20 microg/ml recombinant ovine interferon-tau (roIFNt) or 1 nmol/l oxytocin in the medium. Endometrial progesterone content was similar in the two treatments (M+: 50.25+/-17.34 ng/mg tissue, M-: 43.08+/-11.21 ng/mg tissue). M+ ewes that responded to oxytocin had significantly higher plasma PGFM concentrations between 10 and 80 min after oxytocin administration, a higher mean PGFM peak (P<0.001), higher plasma PGFM levels after the challenge (P<0.05) and higher plasma progesterone concentrations (P<0.01) than control ewes. In the in vitro experiment, M+ and M- control samples secreted similar amounts of PGE(2). The presence of roIFNtau and oxytocin only stimulated PGE(2) production (P<0.05) in M- tissues. Control M+ tissues secreted higher amounts of PGF(2alpha) (P=0.07) and PGF(2alpha) secretion was significantly (P<0.01) stimulated by roIFNtau. Oxytocin produced this effect only in M- samples (P<0.01). In conclusion, although previous studies have demonstrated a positive effect of melatonin on lamb production, PGF(2alpha) secretion is higher in vitro and the PGE(2):PGF(2alpha) ratio is unfavourable in response to IFNtau, which could affect embryo survival. Whether or not these mechanisms are similar in pregnant ewes remains to be elucidated.  相似文献   

16.
Antiabortifacient action of dibenzyloxyindanpropionic acid in mice   总被引:1,自引:0,他引:1  
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF1 alpha) were determined. PGE2 and 6 keto PGF1 alpha were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196 +/- 40 to 370 +/- 84 ng/4 hrs/g creatinine and 6 keto PGF1 alpha (184 +/- 30 to 326 +/- 36), both p less than 0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF1 alpha excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF1 alpha varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF1 alpha release (370 +/- 84 vs. 381 +/- 80) PGE2 and (326 +/- 50 vs. 315 +/- 40) 6 keto PGF1 alpha both p greater than 0.2). PHT alone stimulated only 6 keto PGF1 alpha. PHB and the specific alpha 1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with alpha 1 characteristics.  相似文献   

17.
This study examined the contribution of intrarenal alpha(2)-adrenoceptor mechanisms to the enhanced urine flow rate (V) and urinary sodium excretion (U(Na)V) responses in ketamine-xylazine-anesthetized rats. Ten minutes after left renal artery (LRA) injection, the alpha(2)-adrenoceptor antagonist yohimbine (5 microg) significantly decreased V from 58 +/- 8 to 35 +/- 7 microl. min(-1). g kidney wt(-1) and U(Na)V from 2.8 +/- 0.4 to 2.1 +/- 0.4 microeq. min(-1). g kidney wt(-1) without altering right kidney function. The renal effects of the LRA injection of yohimbine were completely abolished in chronic bilaterally renal-denervated (RDNX) rats. In RDNX rats, a higher LRA dose of yohimbine (15 microg) significantly reduced left and right kidney V, with no effects on U(Na)V. In separate bladder-catheterized rats, yohimbine (0.5 mg/kg), 20 min after intravenous injection, significantly decreased V from 63 +/- 9 to 13 +/- 2 microl. min(-1). g kidney wt(-1 )and U(Na)V from 4.5 +/- 0.5 to 1.1 +/- 0.1 microeq. min(-1). g kidney wt(-1). In RDNX rats, this dose of yohimbine reduced V and U(Na)V, but the magnitude was blunted compared with intact rats. In contrast, 0.1 mg/kg iv yohimbine significantly reduced V and U(Na)V to similar magnitudes in intact and RDNX groups. Together, these findings indicate that intravenous xylazine acts by renal nerve-dependent and -independent mechanisms to enhance renal excretory function in ketamine-anesthetized rats. Because the effects of the LRA dose of yohimbine were abolished in renal-denervated animals, it appears that xylazine has a direct renal action to augment the renal excretion of water and sodium via a presynaptic alpha(2)-adrenoceptor pathway that inhibits the release of neurotransmitters from renal sympathetic nerve terminals.  相似文献   

18.
Based on the nucleotide sequence of a mouse prostaglandin-specific transporter (mOAT-PG), we identified a rat homolog (rOAT-PG) which shares 80% identity with mOAT-PG in a deduced amino acid sequence. rOAT-PG transports PGE(2) and colocalizes with 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a metabolic enzyme for PGs, in proximal tubules, suggesting that rOAT-PG is involved in PGE(2) clearance to regulate its physiological function in the renal cortex. We found that the expression level of rOAT-PG in the renal cortex was much higher in male rats than in female rats whereas there was no gender difference in the expression level of cyclooxygenase-2, a key enzyme producing PGE(2), and 15-PGDH in the renal cortex. Tissue PGE(2) concentration in the renal cortex was lower in male rats than in female rats, suggesting that renocortical PGE(2) concentration is primarily determined by the expression level of OAT-PG, which is regulated differently between male and female rats. Castration of male rat led to a remarkable reduction in OAT-PG expression and a significant increase in renocortical PGE(2) concentration. These alterations were recovered by testosterone supplementation. These results suggest that OAT-PG is involved in local PGE(2) clearance in the renal cortex. Although the physiological importance of the gender difference in local PGE(2) clearance is still unclear, these findings might be a key to clarifying the physiological roles of PGE(2) in the kidney.  相似文献   

19.
OBJECTIVE: The effect of creatine supplementation upon plasma levels of pro-inflammatory cytokines: Interleukin (IL) 1 beta and IL-6, Tumor Necrosis Factor alpha (TNFalpha), and Interferon alpha (INF alpha) and Prostaglandin E(2) (PGE(2)) after a half-ironman competition were investigated. METHODS: Eleven triathletes, each with at least three years experience of participation in this sport were randomly divided between the control and experimental groups. During 5 days prior to competition, the control group (n = 6) was supplemented with carbohydrate (20 g x d(-1)) whereas the experimental group (n = 5) received creatine (20 g x d(-1)) in a double-blind trial. Blood samples were collected 48 h before and 24 and 48 h after competition and were used for the measurement of cytokines and PGE(2). RESULTS: Forty-eight hours prior to competition there was no difference between groups in the plasma concentrations (pg x ml(-1), mean +/- SEM) of IL-6 (7.08 +/- 0.63), TNFalpha (76.50 +/- 5.60), INF alpha (18.32 +/- 1.20), IL-1 beta (23.42 +/- 5.52), and PGE(2) (39.71 +/- 3.8). Twenty-four and 48 h after competition plasma levels of TNFalpha, INF alpha, IL-1 beta and PGE(2) were significantly increased (P < 0.05) in both groups. However, the increases in these were markedly reduced following creatine supplementation. An increase in plasma IL-6 was observed only after 24 h and, in this case, there was no difference between the two groups. CONCLUSION: Creatine supplementation before a long distance triathlon competition may reduce the inflammatory response induced by this form of strenuous of exercise.  相似文献   

20.
Strain differences in cancer incidence are proposed to be due partly to differences in immune function. As potential cancer-associated immunological regulators, the concentrations of hepatic prostaglandins E(2)(PGE(2 alpha)and F(2 alpha)(PGF(2 alpha)) were compared in 9-week-old male and female F344/N and Sprague-Dawley (SD) rats. There were no strain or gender differences in the concentrations of hepatic PGE(2). No strain difference was found in the concentration of hepatic PGF(2 alpha), but the hepatic PGF(2 alpha)concentration in female rats was two-fold that of the male rat (130 vs 60 ng/g). PGE(2)significantly inhibited hepatic natural-killer cell (NK) activity in vitro compared with untreated cells from both genders and strains (P<0.05), 25 ng PGE(2)/ml inhibited NK activity significantly more than did 10 ng PGE(2)/ml (P<0.05). In contrast, 50 ng PGF(2 alpha)/ml and 100 ng PGF(2 alpha)/ml significantly stimulated hepatic NK activity compared with untreated hepatic cells from both F344/N and SD rats. This study suggests that prostaglandins may have a negligible net effect on NK activity associated with rat liver, and may be unlikely to mediate cancer-related immune function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号