首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dental implants may alter the mechanical environment in the jawbone, thereby causing remodelling and adaptation of the surrounding trabecular bone tissues. To improve the efficacy of dental implant systems, it is necessary to consider the effect of bone remodelling on the performance of the prosthetic systems. In this study, finite element simulations were implemented to predict the evolution of microarchitecture around four implant systems using a previously developed model that combines both adaptive and microdamage-based mechano-sensory mechanisms in bone remodelling process. Changes in the trabecular architecture around dental implants were mainly focused. The simulation results indicate that the orientational and ladder-like architecture around the implants predicted herein is in good agreement with those observed in animal experiments and clinical observations. The proposed algorithms were shown to be effective in simulating the remodelling process of trabecular architecture around dental implant systems. In addition, the architectural features around four typical dental implant systems in alveolar bone were evaluated comparatively.  相似文献   

2.
3.
4.
A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric measurements. The method uses high-resolution computer reconstructions of trabecular bone specimens as input for large-scale FE-analyses to determine all the 21 elastic coefficients in the overall stiffness matrix of the specimen, using a direct mechanics approach. An optimization procedure is then used to find the coordinate transformation that yields the best orthotropic representation of this matrix. The method is illustrated here relative to two trabecular bone specimens. The techniques developed here can be used to obtain a complete characterization of the mechanical properties of trabecular architecture. With the development of in vivo reconstruction techniques, even in vivo measurements will be possible.  相似文献   

5.
6.
Because changes in the mechanical properties of bone are closely related to trabecular bone remodeling, methods that consider the temporal morphological changes induced by adaptive remodeling of trabecular bone are needed to estimate long-term fracture risk and bone quality in osteoporosis. We simulated bone remodeling using simplified and pig trabecular bone models and estimated the morphology of healthy and osteoporotic cases. We then displayed the fracture risk of the remodeled models based on a cumulative histogram from high stress. The histogram showed more elements had higher stresses in the osteoporosis model, indicating that the osteoporosis model had a greater risk.  相似文献   

7.
In this pilot study, we point out potential differences between calcaneal trabecular microarchitecture in humans and nonhuman large apes, such as increased degree of anisotropy, reduced bone volume fraction, and very stereotypical orientation of the trabeculae. Even though sample size does not permit us to investigate the issue statistically, the observed differences between humans and other hominoids warrants further in-depth investigation. We also show that some measurements of the trabecular network might be dependent on sampling density, which can be difficult to deal with in the case of animals of different body masses. We also present a new visualization technique that summarizes the trabecular network orientation, and makes it more readily interpretable than the summary statistics of the underlying fabric tensor of the orientation matrix.  相似文献   

8.
9.
10.
11.
Bone aging was studied in an experimental model (rabbit femur) in three populations aged 0.5, 1.5, and 7.5 years. Cortical bone histology was compared with a data set from a 1.5‐month‐old population of an earlier published paper. From 0.5‐year‐old onward, the mean femur length did not increase further. Thereafter, the mean marrow area increased and the cortical area decreased significantly with aging. This was associated with a structural pattern transformation from plexiform to laminar and then Haversian‐like type. The distal meta‐epiphysis bone trabecular density of the oldest populations also was significantly lower in specific regions of interest (ROI). Percentage sealed primary vascular canals in laminar bone significantly increased with aging without variation of percentage sealed secondary osteons. Remodeling rate reflected by the density of cutting cones did not significantly change among the age populations. These data suggest that laminar bone vascular pattern is more functional in the fast diaphyseal expansion but not much streamlined with the renewal of blood flow during secondary remodeling. Bone aging was characterized by: 1) secondary remodeling subendosteally; 2) increment of sealed primary vascular canals number; 3) increased calcium content of the cortex; 4) cortical and trabecular bone mass loss in specific ROIs. Taken together, the present data may give a morphological and morphometric basis to perform comparative studies on experimental models of osteoporosis in the rabbit. J. Morphol. 276:733–747, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
13.
14.
Abstract: Bone mass and bone density were estimated in 219 pedigreed baboons (Papio hamadryas) by radiographic morphometry of the left second metacarpal. Compact bone width (total bone width – medullary canal diameter) and bone ratio (compact bone width/total bone width) decreased with increasing age squared in both sexes. The heritability of medullary canal diameter was 0.64±0.11, of compact bone width was 0.40±0.15 and of bone ratio was 0.67±0.13. The results indicate baboons are a useful model for studies of age, sex and genetic effects on bone mass.  相似文献   

15.
Remodelling of trabecular bone is essentially affected by the mechanical load of the trabeculae. Mathematical modelling and simulation of the remodelling process have to include time-consuming calculations of the displacement field within the complex trabecular structure under loading. We present an adaptive diffuse domain approach for calculating the elastic bone deformation based on micro computer tomogram data of real trabecular bone structures and compared it with a conventional voxel-based finite element method. In addition to allowing for higher computational efficiency, the adaptive approach is characterised by a very smooth representation of the bone surface, which suggests that this approach would be suitable as a basis for future simulations of bone resorption and formation processes within the trabecular structure.  相似文献   

16.
Work on the interspecific and intraspecific variation of trabecular bone in the proximal femur of primates demonstrates important architectural variation between animals with different locomotor behaviors. This variation is thought to be related to the processes of bone adaptation whereby bone structure is optimized to the mechanical environment. Micromechanical finite element models were created for the proximal femur of the leaping Galago senegalensis and the climbing and quadrupedal Loris tardigradus by converting bone voxels from high-resolution X-ray computed tomography scans of the femoral head to eight-noded brick elements. The resulting models had approximately 1.8 million elements each. Loading conditions representing takeoff phase of a leap and more generalized load orientations were applied to the models, and the models were solved using the iterative "row-by-row" matrix-vector multiplication algorithm. The principal strain and Von Mises stress results for the leaping model were similar for both species at each load orientation. Similar hip joint reaction forces in the range of 4.9 x to 12 x body weight were calculated for both species under each loading condition, but the hip reaction values estimated for Loris were higher than predicted based on locomotor behavior. These results suggest that functional adaptation to hip joint loading may not fully explain the differences in femoral head trabecular bone structure in Galago and Loris. The finite element method represents a unique and useful tool for analyzing the functional adaptation of trabecular bone in a diversity of animals and for reconstructing locomotor behavior in extinct taxa.  相似文献   

17.
To characterise the flow of a fluid through a uniform porous medium, the medium may be completely described by its permeability, a measure of flow resistance. Fluid flow in the intertrabecular spaces of cancellous bone has been recognised as an important factor in a number of physical phenomena. In order to investigate the interdependence of permeability, porosity and the structural parameters, we adapted a morphological model and systematically varied its structural parameters. By simulating a viscous Stokes flow regime, we were able to estimate the anisotropic permeability tensor and performed an extensive, stepwise multivariate regression analysis to establish empirical relationships between the morphological parameters and the permeability for the anatomical directions individually. The regression analysis indicated high values of determination coefficients [0.88 < R2 < 0.89 (transversal directions) and R2 = 0.60 (longitudinal direction), porosity-based prediction and R2 = 0.98 for all directions and information presented to the regression model]. We conclude that a pooled set of structural parameters may explain up to 98% of the permeability variability, the regression model predicts permeability values that match experimental data, and a good prediction performance could be achieved by only incorporating the porosity and either the degree of anisotropy (0.89 < R2 < 0.91) or the trabecular spacing predictor (0.96 < R2 < 0.97). These conclusions imply that trabecular thickness and shape parameters only play a minor role in the determination of vertebral trabecular bone permeability. However, a major limitation of the model is that it reflects an idealisation of the real, regionally varying structure of trabecular bone. Therefore, the goodness-of-fit estimates we are presenting should be considered as an upper bound limitation regarding the prediction performance.  相似文献   

18.
19.
The elastic properties and mechanical behavior of trabecular bone are largely determined by its three-dimensional (3D) fabric structure. Recent work demonstrating a correlation between the primary mechanical and material axes in trabecular bone specimens suggests that fabric orientation may be used to infer directional components of the material strength and, by extension, the hypothetical loading regime. Here we quantify the principal orientation of trabecular bone in the femoral head and relate these principal fabric directions to loading patterns during various locomotor behaviors. The proximal femora of a diverse sample of prosimians were scanned using a high-resolution X-ray computed tomography scanner with resolution of better than 50 mum. Spherical volumes of interest were defined within the femoral heads and the 3D fabric anisotropy was calculated using the mean intercept length and star volume distribution methods. In addition to differences in bone volume and anisotropy, significant differences were found in the spatial orientation of the principal trabecular axes depending on locomotor behavior. The principal orientations for leapers (Galago, Tarsius, Avahi) are relatively tightly clustered (alpha(95) confidence limit: 8.2; angular variance s: 18.2 degrees ) and oriented in a superoanterior direction, while those of nonleapers are more variable across a range of directions (alpha(95): 16.8; s: 42.0 degrees ). The mean principal directions are significantly different for leaping vs. nonleaping taxa. These results further suggest a relationship between bone microstructure in the hip joint and locomotor behavior and indicate a similarity of loading across leapers despite differences in kinematics and phylogeny.  相似文献   

20.
Patient-specific analyses of the mechanical properties of bones become increasingly important for the management of patients with osteoporosis. The potential of composite finite elements (CFEs), a novel FE technique, to assess the apparent stiffness of vertebral trabecular bone is investigated in this study. Segmented volumes of cylindrical specimens of trabecular bone are compared to measured volumes. Elasticity under uniaxial loading conditions is simulated; apparent stiffnesses are compared to experimentally determined values. Computational efficiency is assessed and recommendations for simulation parameters are given. Validating apparent uniaxial stiffnesses results in concordance correlation coefficients 0.69 ≤ r𝒸 ≤ 0.92 for resolutions finer than 168 μm, and an average error of 5.8% between experimental and numerical results at 24 μm resolution. As an application, the code was used to compute local, macroscopic stiffness tensors for the trabecular structure of a lumbar vertebra. The presented technique allows for computing stiffness using smooth FE meshes at resolutions that are well achievable in peripheral high resolution quantitative CT. Therefore, CFEs could be a valuable tool for the patient-specific assessment of bone stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号