首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
This study was undertaken to explore the role of Trichoderma sp. in phosphate (P) solubilization and antagonism against fungal phytopathogens. All fungal isolates (SE6, KT6, KT28, and BRT11) and a standard culture of T. harzianum (Th-std) were able to antagonize two fungal phytopathogens (Sclerotium rolfsii and Rhizoctonia solani) of chickpea (Cicer arietinum L.) wilt complex. Transmission electron microscopic studies (TEM) further confirmed ultra-cytological changes in the sclerotia of S. rolfsii parasitized by Trichoderma sp. All fungal cultures exhibited production of NH3 and siderophore, but only BRT11, SE6, and Th-std could produce HCN. Among all the cultures tested, isolate KT6 was found to be most effective for solubilization of ferric phosphate releasing 398.4 μg ml−1 phosphate while isolates BRT11 and SE6 showed more potential for tricalcium phosphate (TCP) solubilization releasing 449.05 and 412.64 μg ml−1 phosphate, respectively, in their culture filtrates. Part of this study focused on the influence of abiotic stress conditions such as pH, temperature, and heavy metal (cadmium) on phosphate (TCP) solubilizing efficiency. Two selected cultures KT6 and T. harzianum retained their P solubilizing potential at varying concentrations of cadmium (0–1000 μg ml−1). Isolate KT6 and standard culture of T. harzianum released 278.4 and 287.6 μg ml−1 phosphate, respectively, at 1000 μg ml−1cadmium. Maximum solubilization of TCP was obtained at alkaline pH and at 28°C temperature. Isolate BRT11 was found most alkalo-tolerant releasing 448.0 μg ml−1 phosphate at pH 9.  相似文献   

2.
The solubilization of rock phosphate (RP) by four yeast strains, Rhodotorula sp., Candida rugosa, Saccharomyces cerevisiae and Saccharomyces rouxii, which were isolated from wheat rhizospheric soils, was investigated in this study. The yeast isolates demonstrated diverse levels of soluble phosphate releasing abilities in modified Pikovskaya liquid medium containing RP as sole phosphate source. C. rugosa was the most effective solubilizer under different conditions, followed by Rhodotorula sp., S. rouxii and S. cerevisiae. Acidification of the broth seemed to be the major mechanism for RP solubilization by the yeast isolates, and the increase in soluble phosphate released was correlated significantly with an increase in titratable acidity and a drop in pH. The optimal composition for the solubilization of RP by the yeast isolates in the broth was 20 g L?1 glucose, 1 g L?1 yeast extract, 0.5 g L?1 (NH4)2SO4, and 5 g L?1 RP, respectively. The yeast isolates were able to solubilize RP at wide range of temperature and initial pH, with the maximum percentage of soluble phosphate released being recorded at 30–35 °C and pH 5–6, respectively.  相似文献   

3.
Forty-six Rhizobium isolates from legume root and stem nodules were examined for their phosphate-solubilizing ability on Pikovskaya’s agar medium. Rhizobium isolates from root nodules of Cassia absus, Vigna trilobata and three strains from Sesbania sesban showed zone of tricalcium phosphate (TCP) solubilization. The isolate from C. absus showed maximum solubilization (620 μg/ml) after 12 d of incubation, while the Rhizobium sp. strain 26 (from S. sesban) showed the least amount (150 μg/ml) of phosphate solubilization. Among the carbon sources tested for their ability to solubilize TCP, maximum solubilization (620 μg/ml) was observed in glucose by Rhizobium isolate from C. absus. Phosphate solubilization increased with increase in glucose concentration steeply up to 2% and slowly above this concentration in four isolates. Among the nitrogen sources tested, maximum solubilization (620 μg/ml) was observed in ammonium sulphate by Rhizobium isolate from C. absus.  相似文献   

4.

A phosphate solubilizing bacterium ZB was isolated from the rhizosphere soil of Araucaria, which falls into the species Pantoea agglomerans. Optimization for phosphate solubilization by strain ZB was performed. At optimum culture conditions, the isolate showed great ability of solubilizing different insoluble inorganic phosphate sources viz. Ca3(PO4)2 (TCP), Hydroxyapatite (HP), CaHPO4, AlPO4, FePO4 along with rock phosphates (RPs). Inoculation with planktonic cells was found to enhance dissolved phosphorous as compared to that achieved by symplasma inoculation. Besides inoculation with different status of cells, pre-incubation could also exert a great effect on phosphate solubilization ability of P. agglomerans. When isolate ZB was cultured with glucose as carbon sources, phosphorous was more efficiently dissolved from HP and RP without pre-incubation in comparison to that obtained with pre-cultivation. Pre-cultivation, however, was more suitable for P solubilization than no pre-cultivation when bacteria were grown with xylose. A positive correlation was detected between the production of organic acids and phosphate solubilization. P. agglomerans ZB possessed many plant growth promotion traits such as N2 fixation and production of indole 3-acetic acid, phytase, alkaline phosphatase. Pot experiment showed inoculation with single isolate ZB or biofertilizer prepared from semi-solid fermentation of isolate ZB with spent mushroom substrate (SMS) compost could enhance plant growth with respect to number of leaves, plant leave area, stem diameter, root length, root dry mass, shoot dry mass and biomass when compared to the abiotic control, revealing strain ZB could be a promising environmental-friendly biofertilizer to apply for agricultural field.

  相似文献   

5.
Phosphate solubilizing bacteria (PSB) play a significant role in plant P nutrition by their effect on soil P dynamics and their subsequent ability to make P available to plants via solubilization and mineralization processes. This study aimed to evaluate the effect of separate and combined use of indigenous PSB, poultry manure (PM) and compost on solubilization and mineralization of rock phosphate (RP) and their subsequent effect on growth and P accumulation of maize (Zea mays L.). A group of fifty seven bacteria were isolated from the rhizosphere/rhizoplane of maize that had been grown in soils collected from varying altitudes (655–2,576 m) of the mountain region of Rawalakot, Azad Jammu and Kashmir, Pakistan. After screening, the capacity of eleven isolates to solubilize mineral phosphate was quantitatively evaluated using insoluble Ca3(PO4)2 in culture medium as a time course study through spectrometer. The growth hormone producing (IAA) capacity of the isolates was also determined. Furthermore, five potential isolates were tested for their ability to increase P release capacity (mineralization) of insoluble RP in an incubation study. The effect of PSB inoculation on maize was determined in a completely randomized greenhouse experiment where root and shoot biomass and P accumulation in plants were assessed. The P solubilization index of selected isolates varied from 1.94 to 3.69, while the P solubilization efficiency ranged between 94.1% and 269.0%. The isolates MRS18 and MRS27 displayed the highest values. The P solubilization in the liquid medium was maximum at 6 and 9 days of incubation ranging between 9.91 and 44.04 µgmL?1 and the isolates MRS27 and MRS34 exhibited the highest solubilization. Six isolates showed additional capability of producing IAA ranging between 2.66 and 28.41 µgmL?1. Results of the incubation study indicated that P release capacity (P mineralization) of RP-amended soil varied between 6.0 and 11.8 µgPg?1 that had been significantly increased to 30.6–36.3 µgPg?1 (maximum value) when PSB were combined with RP. The combined application of PSB and organic amendments (PM, compost) with RP further increased P mineralization by releasing a maximum of 37.7 µgPg?1 compared with separate application of RP (11.8 µgPg?1) and organic amendments (21.5 and 16.5 µgPg?1). The overall effect of PSB (as a group) with RP over RP alone on maize growth showing a relative increase in shoot length 21%, shoot fresh weight 42%, shoot dry weight 24%, root length 11%, root fresh weight 59%, root dry weight 35% and chlorophyll content 32%. This study clearly indicates that use of PSB, and organic amendments with insoluble RP could be a promising management strategy to enhance P availability in soil pool and improve plant growth in intensive cropping systems.  相似文献   

6.
The mineral phosphate solubilizing (MPS) ability of a Serratia marcescens strain, namely CTM 50650, isolated from the phosphate mine of Gafsa, was characterized on a chemically defined medium (NBRIP broth). Various insoluble inorganic phosphates, including rock phosphate (RP), calcium phosphate (CaHPO4), tri-calcium phosphate (Ca3(PO4)2) and hydroxyapatite were tested as sole sources of phosphate for bacterial growth. Solubilization of these phosphates by S. marcescens CTM 50650 was very efficient. Indeed, under optimal conditions, the soluble phosphorus (P) concentration it produced reached 967, 500, 595 and 326 mg/l from CaHPO4, Ca3(PO4)2, hydroxyapatite and RP, respectively. Study of the mechanisms involved in the MPS activity of CTM 50650, showed that phosphate solubilization was concomitant with significant drop in pH. HPLC-analysis of culture supernatants revealed the secretion of gluconic acid (GA) resulting from direct oxidation pathway of glucose when the CTM 50650 cells were grown on NBRIP containing glucose as unique carbon source. This was correlated with the simultaneous detection by PCR for the first time in a S. marcescens strain producing GA, of a gene encoding glucose dehydrogenase responsible for GA production, as well as the genes pqqA, B, C and E involved in biosynthesis of its PQQ cofactor. This study is expected to lead to the development of an environmental-friendly process for fertilizer production considering the capacity of S. marcescens CTM 50650 to achieve yields of P extraction up to 75% from the Gafsa RP.  相似文献   

7.
The ability ofRhizobium andBradyrhizobium strains to solubilize phosphate from hydroxyapatite was determined in a medium containing NH4Cl or KNO3. The presence of NH4 + in the medium resulted in higher solubilization of phosphate as compared to the presence of KNO3, with the exception ofR. leguminosarium bv. viceae strain TAL 1236 and 1402 which solubilized comparable amounts of phosphate in a medium containing either KNO3 or NH4Cl. These results suggest that the strains employ two different mechanisms for phosphate solubilization, one depending on the presence of NH4 +, the other not requiring its presence. Temperature and aeration (O2 demand) optima were 30°C and 4.2 Hz (shaking frequency), respectively. In nonsterile soil the tested strain (R. meliloti TAL 1236) was very effective in solubilizing rock phosphate.  相似文献   

8.
S. Banik  B. K. Dey 《Plant and Soil》1982,69(3):353-364
Summary Among several phosphate-solibilizing micro-organisms isolated from an alluvial soil (Fluvaquent) in sucrose-Ca3(PO4)2 agar plates, two fungal strains, ACF2 (Aspergillus candidus) and ACF1 (A. fumigatus) two bacterial strains, ACB5 (Bacillus firmus B-7650) and ACB6 (B. firmus B-7651) and one actinomycete strain, ACS6 (Streptomyces sp.) were efficient solubilizers, solubilizing 297.0, 288.3, 49.0, 45.8 and 29.0 μg of P as free PO4 −3, respectively, containing 15 mg insoluble P from Ca3(PO4)2 in broth. Solubilization was lesser from AlPO4 and FePO4. The isolates producing oxalic and tartaric acids without or with citric acid showed higher ability of solubilizing insoluble inorganic phosphates. All the above isolates possessed the ability of solubilizing rock phosphate in considerable amounts, ACF1 (A. fumigatus) being the highest (31.5 μg), while ACB6 (B. firmus B-7651) and both the aspergilli also possessed cellulose-decomposing ability in addition. Inoculation of the isolates, in a flask culture experiment, had no significant effect on the accumulation of available phosphorus in soil even when amended with rock phosphate (RP), farm yard manure (FYM), (FYM+RP), rice straw (RS) and (RS+RP). Nevertheless, the overall performance of ACF2 (A. candidus) and ACB6 (B. firmus B-7651) was better than that of the others, in this respect, while ACB5 (B. firmus B-7650) and ACF1 (A. fumigatus) intensified the enhancing effect of FYM and RS. Partial sterilization, by autoclaving, of the soil had no significant effect on available phosphorus content of the soil irrespective of any inoculation.  相似文献   

9.
A pot experiment was conducted in the green house to investigate the establishment of phosphate solubilizing strains of Azotobacter chroococcum, including soil isolates and their mutants, in the rhizosphere and their effect on growth parameters and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Five fertilizer treatments were performed: Control, 90 kg N ha—1, 90 kg N + 60 kg P2O5 ha—1, 120 kg N ha—1 and 120 kg N + 60 kg P2O5 ha—1. Phosphate solubilizing and phytohormone producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected by an enrichment method. In vitro phosphate solubilization and growth hormone production by mutant strains was increased compared with soil isolates. Seed inoculation of wheat varieties with P solubilizing and phytohormone producing A. chroococcum showed better response compared with controls. Mutant strains of A. chroococcum showed higher increase in grain (12.6%) and straw (11.4%) yield over control and their survival (12—14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M37 performed better in all three varieties in terms of increase in grain yield (14.0%) and root biomass (11.4%) over control.  相似文献   

10.
Twenty-three bacterial isolates were screened for their mineral phosphate–solubilizing (MPS) ability on Pikovskaya and National Botanical Research Institute’s phosphate (NBRIP) agar. The majority of the isolates exhibited a strong ability to solubilize hydroxyapatite in both solid and liquid media. The solubilization in liquid medium corresponded with a decrease in the pH of the medium. Serratia marcescens GPS-5, known for its biocontrol of late leaf spot in groundnut, emerged as the best solubilizer. S. marcescens GPS-5 was subjected to ethyl methanesulfonate (EMS) mutagenesis, and a total of 1700 mutants, resulting after 45 minutes of exposure, were screened on buffered NBRIP medium for alterations in MPS ability compared with that of the wild type. Seven mutants with increased (increased-MPS mutants) and 6 mutants with decreased (decreased-MPS mutants) MPS ability were isolated. All seven increased-MPS mutants were efficient at solubilizing phosphate in both solid and liquid NBRIP medium. Among the increased-MPS mutants, EMS XVIII Sm-35 showed the maximum (40%) increase in the amount of phosphate released in liquid medium compared with wild-type S. marcescens GPS-5, therefore, it would be a useful microbial inoculant in groundnut cultivation. EMS III Sm W, a nonpigmented mutant, showed the lowest solubilization of phosphate among the 6 decreased-MPS mutants.  相似文献   

11.
Isolation and characterization of fluorescent pseudomonads with high phosphate-solubilizing ability is reported from the alkaline and calcium-rich soils with low P availability in the cold desert region of Lahaul and Spiti in the trans-Himalayas of India. Of 216 phosphate-solubilizing isolates, 12 exhibiting high solubilization of tricalcium phosphate (TCP) in NBRIP liquid culture were identified as Pseudomonas trivialis, P. poae, P. fluorescens, and Pseudomonas spp. on the basis of phenotypic features, whole-cell fatty acids methyl ester (FAME) profiles, and 16S rDNA sequencing. These isolates also showed relatively high solubilization of North Carolina rock phosphate (NCRP) in comparison to the solubilization of Mussoorie rock phosphate (MRP) and Udaipur rock phosphate (URP). The solubilization of phosphate substrates by P. trivialis and P. poae is reported for the first time.  相似文献   

12.
Several yeasts, fungi and bacteria isolated from the rhizosphere of leguminous crops and soils of rock phosphate deposit area were found to solubilize low-grade Mussorie rock phosphate. Of the several yeasts and fungi,Schawanniomyces occidentalis, Aspergillus awamori andPenicillium digitatum were better than others in rock phosphate solubilization. Among bacterial isolates from soils of rock phosphate deposits, Gram-negative motile rods were more effective than Gram-negative non-motile rods in dissolving rock phoshates. The most efficient bacteria were identified as strains ofPseudomonas striata. All the microorganisms acidified the liquid medium but there was no relationship between the rock phosphate dissolved and the decrease in pH of the culture broth.  相似文献   

13.
Five phosphate-solubilizing bacteria (PSB) used in this study were isolated based on their ability to solubilize tricalcium phosphate (TCP) in Pikovskaya’s medium. Among the tested bacterial strains Burkholderia sp. strain CBPB-HIM showed the highest solubilization (363 μg of soluble P ml−1) activity at 48 h of incubation. Further, this strain has been selected to assess its shelf life in nutrient-amended and -unamended clay, rice bran and rock phosphate (RP) pellet-based granular formulation. The results showed that the maximum viability of bacterium was observed in clay and rice bran (1:1) + 10% RP pellets than clay-RP pellets, irrespective of tested storage temperatures. Further, clay and rice bran (1:1) + 10% RP pellets amended with 1% glucose supported the higher number of cells compared to glycerol-amended and nutrient-unamended pellets. In this carrier solubilization of Morocco rock phosphate (MRP) by Burkholderia sp. strain CBPB-HIM was also investigated. The maximum of water and bicarbonate extractable P (206 and 245 μg P g−1 of pellet respectively) was recorded in clay and rice bran (1:1) + 10% RP pellets amended with 1% glucose and glycerol respectively on day 5 of incubation. Therefore, this study proved the possibility of developing granular inoculant technology combining clay, rice bran and RP as substrates with phosphate-solubilizing Burkholderia.  相似文献   

14.
Abstract

Phosphorus (P) is the most important macronutrient next to nitrogen for the growth and development of plants. But often unavailable for plants because of its high reactivity with many soil constituents. Thus, the use of phosphate solubilizing bacteria (PSBs) as biofertilizers seems to be an effective way to resolve the soluble phosphorus availability in soil. The present study was conducted to isolate and characterize rock PSB associated with the rhizosphere of wheat (Triticum aestivum L.) from fourteen different wheat-growing sites of Meknes region in Morocco. A total of one hundred ninety-eight (198) rock PSBs were isolated employing NBRIP medium amended with rock phosphate (RP), out of which five strains (A17, A81, B26, B106, and B107) were selected for their strong ability to dissolve RP and were tested in vitro for plant growth-promoting (PGP) traits including production of indole acetic acid (IAA), siderophores, hydrogen cyanide (HCN), and antifungal activity, as well as their response to the effect of extrinsic and intrinsic stress. The 16S rRNA gene sequencing and phylogenetic analysis identified these isolates belong to four genera, Pantoea, Pseudomonas, Serratia, and Enterobacter. The phosphate solubilization index (SI) of selected isolates ranged between 2.3 and 2.7, and the amount of solubilized phosphorus in the liquid medium varied from 59.1 to 90.2 µg mL?1. HPLC analysis revealed that all the selected isolates produced multiple organic acids (oxalic, citric, gluconic succinic, and fumaric acids) from glucose under aerobic conditions. Except for the A81 strain, all selected isolates were able to produce IAA ranging between 2.9 and 21.2 µg mL?1. The isolates A17, B26, and B107 showed the ability to produce siderophores ranging from 79.3 to 20.8% siderophore units. Only two strains (A17 and B26) were able to produce HCN. All selected isolates showed good resistance against different environmental stresses like 10–50?°C temperature, 0.5–2?g L?1 salt concentration and 4.5–9?pH range, and against different antibiotics. The antagonistic effect showed that among the five selected strains, only two strains (B26 and A17) were able to suppress the growth of tested fungi. This study clearly indicates that our selected rock PSBs can be used as biofertilizers for grain crops after studying their interaction with the host crop and field evaluation.  相似文献   

15.
Screening soil samples collected from a diverse range of slightly alkaline soil types, we have isolated 22 competent phosphate solubilizing bacteria (PSB). Three isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 hydrolyzed inorganic and organic phosphate compounds effectively. Bacterial growth rates and phosphate solubilization activities were measured quantitatively under various environmental conditions. In general, a close association was evident between phosphate solubilizing ability and growth rate which is an indicator of active metabolism. All three PSB were able to withstand temperature as high as 42°C, high concentration of NaCl upto 5% and a wide range of initial pH from 5 to 11 while hydrolyzing phosphate compounds actively. Such criteria make these isolates superior candidates for biofertilizers that are capable of utilizing both organic and mineral phosphate substrates to release absorbable phosphate ion for plants.  相似文献   

16.
An efficient phosphate-solubilizing plant growth–promoting Acinetobacter rhizosphaerae strain BIHB 723 exhibited significantly higher solubilization of tricalcium phosphate (TCP) than Udaipur rock phosphate (URP), Mussoorie rock phosphate (MRP) and North Carolina rock phosphate (NCRP). Qualitative and quantitative differences were discerned in the gluconic, oxalic, 2-keto gluconic, lactic, malic and formic acids during the solubilization of various inorganic phosphates by the strain. Gluconic acid was the main organic acid produced during phosphate solubilization. Formic acid production was restricted to TCP solubilization and oxalic acid production to the solubilization of MRP, URP and NCRP. A significant increase in plant height, shoot fresh weight, shoot dry weight, root length, root dry weight, and root, shoot and soil phosphorus (P) contents was recorded with the inoculated treatments over the uninoculated NP0K or NPTCPK treatments. Plant growth promotion as a function of phosphate solubilization suggested that the use of bacterial strain would be a beneficial addition to the agriculture practices in TCP-rich soils in reducing the application of phosphatic fertilizers.  相似文献   

17.
The study was aimed to develop biofertilizer solubilizing inorganic phosphates for region experiencing temperature, pH and salt stressed conditions. A yeast strain PS4, which was temperature-, pH- and salt-tolerant and capable of solubilizing insoluble inorganic phosphate was isolated from rhizosphere of seabuckthorn (Hippophae rhamnoides L.), growing in the Indian Trans-Himalaya. Based on morphological, biochemical, whole cell FAME analysis and molecular characterization, strain PS4 was identified as Rhodotorula sp. The soluble phosphate production under optimal conditions at pH 7 and 30°C was 278.3 mg l−1. Strain PS4 showed ability to solubilize insoluble phosphate under different stress conditions viz. 5–40°C temperature, 1–5% salt concentration and 3–11 pH range. Soluble phosphate production from Ca3(PO4)2 under combined stress conditions at extreme values of temperature, pH and salt concentration showed 81.6–83.2% reduction as compare to optimal conditions after 5 days incubation. The strain solubilize Ca3(PO4)2 to a great extent than FePO4 and AlPO4. The solubilization of insoluble phosphate was associated with drop in pH of the culture media. Inoculation of tomato seedling with the strain increased fruit yield, roots and shoot length. Rhodotorula sp. PS4 with phosphate-solubilizing ability under stress conditions appeared to be attractive for exploring their plant growth-promoting activity towards the development of microbial inoculants in stressed region.  相似文献   

18.
The use of phosphate-solubilizing fungi is a promising biotechnological strategy in the management of phosphorus (P) fertilization, as it enables the utilization of rock phosphates (RP) or the recovery of P fixed in soil particles. The objective of our study was to evaluate fungal isolates for mechanisms of solubilization of P-bearing compounds, such as AlPO4, FePO4, Ca3(PO4)2, Araxá RP, and Catalão RP. Four fungal isolates obtained from Brazilian soils were characterized in liquid media: Aspergillus niger FS1, Penicillium canescens FS23, Eupenicillium ludwigii FS27, and Penicillium islandicum FS30. A. niger FS1 was the only isolate able to solubilize all of the P sources, solubilizing 71, 36, 100, and 14 % of the P from AlPO4, FePO4, Ca3(PO4)2, and RPs, respectively. Medium acidification was an effective solubilization mechanism, particularly for Ca3(PO4)2. The other P sources were mainly solubilized through organic acids produced by the fungi. Oxalic acid, produced exclusively by A. niger FS1, and citric acid were decisive factors in the solubilization of AlPO4 and FePO4. Penicillium isolates produced more gluconic acid than A. niger FS1 in all treatments. However, this higher production did not result in higher solubilization for any of the P sources, showing that gluconic acid contributes little to the solubilization of the P sources evaluated. The higher capacity of medium acidification and the production of organic acids with stronger metal-complexation activity are characteristics that confer to A. niger FS1 a wider action on insoluble P sources. Consequently, this isolate qualifies as a promising candidate for application in the management of P fertilization.  相似文献   

19.
A total of 40 endophytic bacterial isolates obtained from banana tree roots were characterized for their biotechnological potential for promoting banana tree growth. All isolates had at least one positive feature. Twenty isolates were likely diazotrophs and formed pellicles in nitrogen-free culture medium, and 67% of these isolates belonged to the genus Bacillus sp. The isolates EB-04, EB-169, EB-64, and EB-144 had N fixation abilities as measured by the Kjeldahl method and by an acetylene reduction activity assay. Among the 40 isolates, 37.5% were capable of solubilizing inorganic phosphate and the isolates EB-47 and EB-64 showed the highest solubilization capacity. The isolate EB-53 (Lysinibacillus sp.) had a high solubilization index, whereas 73% of the isolates had low solubilization indices. The synthesis of indole-3-acetic acid (IAA) in the presence of L-tryptophan was detected in 40% of the isolates. The isolate EB-40 (Bacillus sp.) produced the highest amount of IAA (47.88 μg/ml) in medium supplemented with L-tryptophan and was able to synthesize IAA in the absence of L-tryptophan. The isolates EB-126 (Bacillus subtilis) and EB-47 (Bacillus sp.) were able to simultaneously fix nitrogen, solubilize phosphate and produce IAA in vitro. The results of this study demonstrated that the isolates analyzed here had diverse abilities and all have the potential to be used as growth-promoting microbial inoculants for banana trees.  相似文献   

20.
Abstract

Phosphorous (P) that upholds life become unattainable as most of them become unavailable due to the formation of insoluble complexes with cations such as Ca2+, Al3+ and Fe3+ forming a complex calcium phosphate (Ca3(PO4)2), aluminum phosphate (AlPO) and ferrous phosphate (FePO) that results in the decrease of soluble P to a greater extent. There are several reports stating that several rhizospheric fungal species play an important role in solubilizing these insoluble phosphates into a soluble form by the excretion of enzymes like phosphatase, phytase enzymes, and organic acids. In view of this, so we have collected twenty fungal isolates having probable phosphate solubilizing efficiency from different regions of Lucknow, India. Their morphological and biochemical characteristics were tested. Among all, six efficient fungal isolates were further checked at molecular level by using 18S rRNA universal primers and by RAPD means. A dendrogram indicated 40-90% homology i.e., highest similarity was found in between species of Aspergillus flavus and A. biplanus with 33.8% similarity while minimum similarity was observed among A. flavus and Fusarium oxysporum. These findings suggest RAPD proves as, a reliable molecular tool that helps in strain specific discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号