首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Aptamer selection for the detection of Escherichia coli K88   总被引:2,自引:0,他引:2  
In this study, the first group of single-stranded DNA aptamers that are highly specific to enterotoxigenic Escherichia coli (ETEC) K88 was obtained from an enriched oligonucleotide pool by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, during which the K88 fimbriae protein was used as the target and bovine serum albumin as counter targets. These aptamers were applied successfully in the detection of ETEC K88. They were then grouped under different families based on the similarity of their secondary structure and the homology of their primary sequence. Four sequences from different families were deliberately chosen for further characterization by fluorescence analysis. Having the advantage of high sensitivity, fluorescence photometry was selected as single-stranded DNA quantification method during the SELEX process. Aptamers with the highest specificity and affinity were analyzed to evaluate binding ability with E. coli. Since ETEC K88 is the only type of bacterium that expressed abundant K88 fimbriae, the selected aptamers against the K88 fimbriae protein were able to specifically identify ETEC K88 among other bacteria. This method of detecting ETEC K88 by aptamers can also be applied to bacteria other than ETEC K88.  相似文献   

2.
Epigenetic modifications of N-terminal histone tails, especially histone H3, are important for the regulation of the target genes in chromatin. Specific methods for detection of these modifications in histone H3?N-terminal peptides are valuable tools for diagnostic and therapeutic purposes. As an alternative to antibodies, RNA aptamers display compatible binding affinities and selectivites against various biologically relevant targets. Systematic evolution of ligands by exponential enrichment (SELEX) was performed against histone H3R8Me2sym. A 14-amino acid peptide that mimics this modified histone tail was prepared in a biotinylated form and 10 selection cycles of SELEX were carried out. This produced 4 aptamers, one of which (clone 1) was observed to have low nanomolar binding affinity (K(d)=12 nM) against the cognate peptide. The affinity of this aptamer is comparable to 2 commercially available antibodies against differently modified histone H3 peptides and it displays a greater selectivity than the antibodies.  相似文献   

3.
4.
RNA aptamers specific for bovine thrombin   总被引:4,自引:0,他引:4  
Bovine thrombin is widely used in clinical wound healing after surgery. There is 85% homology between bovine thrombin and human thrombin, so most antibodies against bovine thrombin cross-react with human thrombin. Rare antibodies against bovine thrombin but not cross-reacting with human thrombin have been reported. RNA ligands (aptamers) have been used to bind to target molecules with sometimes higher specificity than antibodies. Here we report the isolation of aptamers specific for bovine thrombin by systematic evolution of ligands by exponential enrichment (SELEX) from an RNA pool containing a 25-nucleotide randomized region. After seven rounds of selection, two aptamers specific for bovine thrombin were identified with a K(d) of 164 and 240 nM, respectively. Significantly, these aptamers do not bind to human thrombin. Secondary structure prediction revealed potential stem-loop structures for these RNAs. Both RNA aptamers inhibit only bovine thrombin-catalyzed fibrin clot formation in vitro. Competition assay results suggested that the RNA aptamers might bind to the electropositive domain of bovine thrombin, that is, heparin-binding site, instead of fibrinogen-recognition exosite. The resulting bovine-specific thrombin inhibitor might be used in some clinical applications when bovine thrombin activity needs to be contained or in research where human and bovine thrombin need to be distinguished.  相似文献   

5.
Ohuchi SP  Ohtsu T  Nakamura Y 《Biochimie》2006,88(7):897-904
In most cases, anti-protein aptamers are selected by systematic evolution of ligands by exponential enrichment (SELEX) using purified recombinant protein targets. Cell surface proteins, however, are not easy targets for SELEX due to the difficulties associated with their purification. Here, we developed a novel SELEX procedure (referred to as TECS-SELEX) in which cell-surface displayed recombinant protein is directly used as the selection target. Using this method, we isolated RNA aptamers against transforming growth factor-beta type III receptor expressed on Chinese hamster ovary (CHO) cells. One of the RNA aptamers has a dissociation constant in the 1 nM range and competed with transforming growth factor-beta to bind to the cell surface receptor in vitro.  相似文献   

6.
Single stranded DNA aptamers that bind with high affinity and specificity to the oxytetracycline (OTC) were identified by selection from an oligonucleotide library of 10(15) molecules. The binding affinities of four aptamers were in nanomolar range. The aptamers were highly selective in that, lack of -OH group at 5-position in tetracycline and -H group in place of -OH at 6-position in doxycycline determined the specificity of these aptamers to bind OTC. Three aptamers designated as No. 4, 5, and 20 shared strong affinities with K(d)=9.61, 12.08, and 56.84 nM, respectively, as well as selectivity to bind OTC (72-76%). Aptamer No. 4 had strong affinity among all with high selectivity, whereas No. 2 had relatively weak affinity (K(d)=121.1 nM) and moderate selectivity (52%). Our results indicated that the aptamers No. 4, 5, and 20 with variable 40-base oligonucleotides can be good candidates for selectively binding to OTC with high molecular discrimination over its analogs such as tetracycline and doxycycline.  相似文献   

7.
Ahn JY  Jo M  Dua P  Lee DK  Kim S 《Oligonucleotides》2011,21(2):93-100
RNA and DNA aptamers that bind to target molecules with high specificity and affinity have been a focus of diagnostics and therapeutic research. These aptamers are obtained by SELEX often requiring many rounds of selection and amplification. Recently, we have shown the efficient binding and elution of RNA aptamers against target proteins using a microfluidic chip that incorporates 5 sol-gel binding droplets within which specific target proteins are imbedded. Here, we demonstrate that our microfluidic chip in a SELEX experiment greatly improved selection efficiency of RNA aptamers to TATA-binding protein, reducing the number of selection cycles needed to produce high affinity aptamers by about 80%. Many aptamers were identical or homologous to those isolated previously by conventional filter-binding SELEX. The microfluidic chip SELEX is readily scalable using a sol-gel microarray-based target multiplexing. Additionally, we show that sol-gel embedded protein arrays can be used as a high-throughput assay for quantifying binding affinities of aptamers.  相似文献   

8.
We proposed to use a novel stepwise sequence-constructive SELEX method to develop DNA aptamers that can recognize Globo H which is a tumor-associated carbohydrate antigen. A combinatorial synthetic library that consisted of DNA molecules with randomized regions of 15-bases was used as the starting library for the first SELEX procedure. The input DNA library for the second round of SELEX consisted of the extension of the 5′ and 3′-ends with 7-bases that were randomized from four selected aptamers. The third round of SELEX was performed following the same procedures as described for the second round of SELEX. The experimental results indicate that the binding affinity of DNA aptamers to Globo H was enhanced when using the sequence-constructive SELEX approach. The selectivity of the DNA aptamers for related disaccharides, mannose derivatives, and Globo H analogs demonstrated the ability of the DNA aptamers to discriminate the presence of various glycans with different structures.  相似文献   

9.
目的:建立一种基于Western印迹的指数式富集的配体系统进化(SELEX)技术,用于未纯化蛋白样品核酸适配体筛选。方法:将目的蛋白经SDS-PAGE分离后转移到PVDF膜上,用生物素标记的ss DNA与PVDF膜上的蛋白共同孵育,获得能与靶蛋白特异结合的适配体,最后通过生物素-链霉亲和素-辣根过氧化物酶系统、基因克隆测序、MEME在线软件和RNAstructure软件分析适配体的一、二级结构,并对筛选得到的适配体进行鉴定。结果:经过4轮筛选,获得了能特异识别靶蛋白而不识别无关蛋白的适配体,原库Gp45则与上述蛋白均没有结合。结论:建立了Western印迹-SELEX技术,可用于未纯化蛋白样品核酸适配体筛选。  相似文献   

10.
核酸适配体是一类具有特异性分子识别能力的单链DNA或者RNA分子,通过指数富集的配体系统进化技术(SELEX)筛选得到。核酸适配体相比抗体具有热稳定性高、便于化学合成与修饰、免疫原性低等优点,在生物分析、生物医学、生物技术等众多领域引起广泛关注。高质量的核酸适配体是应用的基础,然而目前能够满足实际应用的核酸适配体数量还非常有限。如何获得高亲和力、高特异性、高体内稳定性的核酸适配体是核酸适配体领域的技术瓶颈。本文首先简单介绍了SELEX技术的基本原理和核酸库的设计、筛选过程监控、次级文库制备、测序和候选适配体筛选等关键步骤。接着归纳总结了30多年来核酸适配体筛选技术的6个主要研究方向、研究进展和局限性。这6个主要研究方向分别是提高适配体特异性的筛选方法、提高适配体稳定性(抗核酸酶降解能力)的筛选方法、快速筛选方法、复杂靶标适配体筛选方法、小分子靶标适配体筛选方法、提高适配体亲和力的筛选方法。其中快速筛选技术是长期以来持续关注的研究方向,几乎所有物理分离手段都已用于提高SELEX的筛选效率。最近,高效化学反应与SELEX技术的结合为核酸适配体的快速筛选提供了新的策略。本文随后对适合小分子靶标核酸适配体筛选的3类方法进展和存在的问题进行了重点评述。这3类方法分别是基于靶标固定的筛选技术、基于文库固定的筛选技术(捕获-SELEX,Capture-SELEX)和均相筛选技术(氧化石墨烯-SELEX,GO-SELEX)。基于靶标固定的筛选技术尽管存在空间位阻等众多问题,由于其操作的简单性,目前依然应用广泛。近年来Capture-SELEX应用广泛。结合36种靶标适配体的筛选实验条件(文库设计、正筛靶标浓度、负筛靶标的选择和浓度)和所获得的适配体的亲和力(KD,解离常数,dissociation constant)和特异性,对Capture-SELEX的实验条件与适配体性能的关系进行了讨论。统计数据表明,降低正筛靶标浓度有利于提高适配体的亲和力,但不是必要条件。负筛选是目前提高适配体特异性的主要技术手段,但适配体的特异性还不能满足实际需求。负筛选靶标及其浓度的选择差异很大,而且36种靶标中有20种靶标的适配体筛选没有进行负筛选。如何提高核酸适配体的特异性是目前小分子靶标核酸适配体所面临的难题,急需寻找新的策略。本文还列表归纳了近三年利用GO-SELEX进行的13种小分子靶标的实验条件和所获得的适配体的KD和特异性。统计数据表明,GO-SELEX比Capture-SELEX所需要的筛选轮数少,两种方法所获得的适配体的亲和力多在纳摩尔每升水平。Capture-SELEX相对较低的筛选效率应该主要由于文库的自解离问题。核酸适配体的亲和力评价是候选核酸适配体结构与性能评价的重要组成部分。常用的核酸适配体亲和力评价技术包括基于分离、基于固定、均相体系三大类十多种方法。假阳性和假阴性是各种评价技术都有可能存在的问题。本文以纳米金比色法和等温热滴定技术为例评述技术进展,讨论导致不同亲和力评价技术结果不一致性问题的根本原因。本文最后对核酸适配体筛选技术、亲和力评价技术和技术的标准化的未来发展趋势进行了展望。  相似文献   

11.

Background

Adipose tissue, mainly composed of adipocytes, plays an important role in metabolism by regulating energy homeostasis. Obesity is primarily caused by an abundance of adipose tissue. Therefore, specific targeting of adipose tissue is critical during the treatment of obesity, and plays a major role in overcoming it. However, the knowledge of cell-surface markers specific to adipocytes is limited.

Methods and Results

We applied the CELL SELEX (Systematic Evolution of Ligands by EXponential enrichment) method using flow cytometry to isolate molecular probes for specific recognition of adipocytes. The aptamer library, a mixture of FITC-tagged single-stranded random DNAs, is used as a source for acquiring molecular probes. With the increasing number of selection cycles, there was a steady increase in the fluorescence intensity toward mature adipocytes. Through 12 rounds of SELEX, enriched aptamers showing specific recognition toward mature 3T3-L1 adipocyte cells were isolated. Among these, two aptamers (MA-33 and 91) were able to selectively bind to mature adipocytes with an equilibrium dissociation constant (Kd) in the nanomolar range. These aptamers did not bind to preadipocytes or other cell lines (such as HeLa, HEK-293, or C2C12 cells). Additionally, it was confirmed that MA-33 and 91 can distinguish between mature primary white and primary brown adipocytes.

Conclusions

These selected aptamers have the potential to be applied as markers for detecting mature white adipocytes and monitoring adipogenesis, and could emerge as an important tool in the treatment of obesity.  相似文献   

12.
Kallikrein-related peptidase 6 (KLK6) is an active serine protease that has been implicated in common pathologies, including neurodegenerative disorders such as Parkinson and Alzheimer disease and certain types of cancer. Antibodies, either polyclonal or monoclonal, that exhibit specificity for distinct members of the extended kallikrein family, including KLK6, were developed. With the exception of KLK3/PSA, the identification and generation of aptamers, as potential new tools with improved characteristics demanded for therapeutic and diagnostic applications, has not been explored for KLKs. Here, we report for the first time the identification of novel DNA aptamers against KLK6 that were isolated using a modified systemic evolution of ligands by exponential enrichment technique. The identified aptamers were characterized using fluorescence spectroscopy, competition ELISA, and quartz crystal microbalance, and two aptamers (008 and 022) were found to exhibit high affinity (K(d) in the low nanomolar range) for KLK6. Aptamers were tested for their ability to bind to serum albumin, to demonstrate their specificity for their target, and the possible involvement of such proteins in the transport of aptamers into the bloodstream. The developed aptamers are expected to assist the development of novel diagnostic, biosensing, and therapeutic strategies.  相似文献   

13.
Mutations in the KRAS gene occur frequently in various human tumors and are known to lead to malignant transformation. We isolated RNA aptamers targeting activated mutant KRAS proteins using an improved SELEX method by isothermal RNA amplification. RNA aptamers were selected against mutant KRAS (G12V) proteins, as well as a biotinylated 15-amino-acid peptide from the carboxyl terminal of KRAS that contains a farnesylation site. All the selected RNA aptamers bound to the basic carboxy-terminal region of KRAS protein and the highest K(D) value was 2.3 microM. By an in vitro scintillation proximity assay, we demonstrated that KRAS aptamers inhibited farnesylation moderately. From these aptamers, we determined a consensus sequence (U)CCAAGCAC(AC) that, when concatamerized, exhibited higher binding affinity to the carboxy-terminal region of KRAS protein. Further improvement of binding affinity between aptamers and KRAS protein might provide a new therapeutic approach for activated mutant KRAS proteins.  相似文献   

14.
肺癌是发病率和死亡率较高的恶性肿瘤。现阶段,用于肺癌早期诊断的血清肿瘤标志物因其特异性与敏感性均较低,严重影响肺癌的临床诊断和治疗。本文用双向热循环消减指数富集的配基进化(systematic evolution of ligands by exponential enrichment, SELEX)技术,筛选肺癌和非癌血清标志物的核酸适配体,建立肺癌的检测方法,提高诊断和治疗效率。实验用环氧基琼脂磁珠为筛选介质,以非癌混合血清、肺癌混合血清作为双向靶标。应用热循环消减SELEX技术,经19轮筛选分别获得非癌和肺癌血清的特异性核酸适配体。通过高通量测序,得到 40条非癌核酸适配体序列和 41条肺癌核酸适配体序列。从肺癌与非癌血清特异性核酸适配体序列中分别挑选出高丰度的 4条序列,合成后制成检测试剂,经临床血清验证,阳性率为 90%。该检测方法检测灵敏度高,为肺癌的早期诊断和治疗提供了新的分子识别元件。  相似文献   

15.
In order to find small RNA molecules that are specific and high-affinity ligands of nonstructural 5B (NS5B) polymerase, we screened by SELEX (systematic evolution of ligands by exponential amplification) a structurally constrained RNA library with an NS5BDeltaC55 enzyme carrying a C-terminal biotinylation sequence. Among the selected clones, two aptamers appeared to be high-affinity ligands of NS5B, with apparent dissociation constants in the low nanomolar range. They share a sequence that can assume a stem-loop structure. By mutation analysis, this structure has been shown to correspond to the RNA motif responsible for the tight interaction with NS5B. The aptamers appeared to be highly specific for the hepatitis C virus (HCV) polymerase since interaction with the GB virus B (GBV-B) NS5B protein cannot be observed. This is consistent with the observation that the activity of the HCV NS5B polymerase is efficiently inhibited by the selected aptamers, while neither GBV-B nor poliovirus 3D polymerases are affected. The mechanism of inhibition of the NS5B activity turned out to be noncompetitive with respect to template RNA, suggesting that aptamers and template RNA do not bind to the same site. As a matter of fact, mutations introduced in a basic exposed surface of the thumb domain severely impaired both the binding of and activity inhibition by the RNA aptamers.  相似文献   

16.
A single-stranded DNA (ssDNA) aptamer was successfully developed to specifically bind to nicotinamide phosphoribosyl transferase (Nampt) through systematic evolution of ligands by exponential enrichment (SELEX) and successfully implemented in a gold-interdigitated (GID) capacitor-based biosensor. Surface plasmon resonance (SPR) analysis of the aptamer revealed high specificity and affinity (K(d)=72.52nM). Changes in surface capacitance/charge distribution or dielectric properties in the response of the GID capacitor surface covalently coupled to the aptamers in response to changes in applied AC frequency were measured as a sensing signal based on a specific interaction between the aptamers and Nampt. The limit of detection for Nampt was 1ng/ml with a dynamic serum detection range of up to 50ng/ml; this range includes the clinical requirement for both normal Nampt level, which is 15.8ng/ml, and Nampt level in type 2 diabetes mellitus (T2DM) patients, which is 31.9ng/ml. Additionally, the binding kinetics of aptamer-Nampt interactions on the capacitor surface showed that strong binding occurred with increasing frequency (range, 700MHz-1GHz) and that the dissociation constant of the aptamer under the applied frequency was improved 120-240 times (K(d)=0.3-0.6nM) independent on frequency. This assay system is an alternative approach for clinical detection of Nampt with improved specificity and affinity.  相似文献   

17.
The development of reagents with high affinity and specificity to the antigens of hepatitis C virus (HCV) is important for the early stage diagnosis of its infection. Aptamers are short, single-stranded oligonucleotides with the ability to specifically recognize target molecules with high affinity. Herein, we report the selection of RNA aptamers that bind to the core antigen of HCV. High affinity aptamers were isolated from a 10(15) random library of 60 mer RNAs using the SELEX procedure. Importantly, the selected aptamers specifically bound to the core antigen, but not to another HCV antigen, NS5, in a protein chip-based assay. Using these aptamers, we developed an aptamer-based biosensor for HCV diagnosis and detected the core antigen from HCV infected patients' sera with good specificity. This novel aptamer-based antigen detection sensor could be applied to the early diagnosis of HCV infection.  相似文献   

18.
Fluoroacetamide (Mw = 77.06) is a lethal rodenticide to humans and animals which is still frequently abused in food storage somewhere in China. The production of antibodies for fluoroacetamide is difficult due to its high toxicity to animals, which limits the application of immunoassay method in poison detection. In this work, aptamers targeting N-fluoroacetyl glycine as an analog of fluoroacetamide were selected by a specific systematic evolution of ligands by exponential enrichment (SELEX) strategy. The binding ability of the selected aptamers to fluoroacetamide was identified using surface plasmon resonance (SPR)-based assay. The estimated KD values in the low micromolar range showed a good affinity of these aptamers to the target. Our work verified that the SELEX strategy has the potential for developing aptamers targeted to small molecular toxicants and aptamers can be employed as new recognition elements instead of antibodies for poison detection.  相似文献   

19.
A sol-gel microarray system was developed for a protein interaction assay with high activity. Comparing to 2-dimensional microarray surfaces, sol-gel can offer a more dynamic and broad range for proteins. In the present study, this sol-gel-integrated protein array was used in binding affinity analysis for aptamers. Six RNA aptamers and their target protein, yeast TBP (TATA-binding protein), were used to evaluate this method. A TBP-containing sol-gel mixture was spotted using a dispensing workstation under high-humidity conditions and each Cy-3-labeled aptamer was incubated. The dissociation constants (K(d)) were calculated by plotting the fluorescent intensity of the bound aptamers as a function of the TBP concentrations. The K(d) value of the control aptamer was found to be 8?nM, which agrees well with the values obtained using the conventional method, electric mobility shift assay. The sol-gel-based binding affinity measurements fit well with conventional binding affinity measurements, suggesting their possible use as an alternative to the conventional method. In addition, aptamer affinity measurements by the sol-gel-integrated protein chip make it possible to develop a simple high-throughput affinity method for screening high-affinity aptamers.  相似文献   

20.
Lung cancer is the most lethal malignancy in the world, and each year thousands of people die from this disease. Early detection has proven to increase the 5-year survival for this cancer in general, independent of the origination site in the lung. To address this challenge, we have used cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) to select a panel of aptamers capable of distinguishing lung adenocarcinoma cells from normal lung epithelial cells. These aptamers bind at physiological and formalin-fixed conditions and display affinity for their targets with apparent Kd''s in the nanomolar range. Our findings suggest that the selected aptamers have the potential to be used in clinical settings, as well as to improve classification of nonsurgical specimens, another current challenge in lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号