首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA gyrase is the target of coumarin and cyclothialidine antibacterials, which bind to the B subunit of the enzyme (GyrB). Currently available GyrB inhibitors have not been clinically successful, but their high in vitro potency against DNA gyrase has raised interest in the development of novel noncoumarin antibacterials acting at the same site. We report the development of a simple scintillation proximity assay (SPA) for the study of binding interactions between coumarin or noncoumarin antibacterials and GyrB, which prevents the needs of separation steps and can be run in microtiter plate formats. The assay is based on the detection of the binding of a radioligand, [3H]dihydronovobiocin, to a biotin-labeled 43-kDa fragment of GyrB (biotin-GyrB43), which is captured by streptavidin-coated SPA beads. The typical assay was conducted in 96-well microtiter plates, with final concentration of 10 nM for biotin-GyrB43, 20 nM for [3H]dihydronovobiocin, and 33 microg of SPA beads/well. From saturation experiments, an equilibrium dissociation constant (K(d)) for dihydronovobiocin of 8.10 nM was found. Displacement studies gave 50% inhibitory concentrations (IC(50)) of 42, 64, and 11 nM for novobiocin, dihydronovobiocin, and the cyclothialidine analogue GR122222X, respectively, consistent with previous findings. The assay was found to be robust to dimethyl sulfoxide up to 5% (v/v) and can be used for high-throughput screens of large chemical collections in the search of novel DNA gyrase inhibitors.  相似文献   

2.
Fighting bacterial resistance is a challenging task in the field of medicinal chemistry. DNA gyrase represents a validated antibacterial target and has drawn much interest in recent years. By a structure-based approach we have previously discovered compound 1, an indolinone derivative, possessing inhibitory activity against DNA gyrase. In the present paper, a detailed biophysical characterization of this inhibitor is described. Using mass spectrometry, NMR spectroscopy, and fluorescence experiments we have demonstrated that compound 1 binds reversibly to the ATP-binding site of the 24 kDa N-terminal fragment of DNA gyrase B from Escherichia coli (GyrB24) with low micromolar affinity. Based on these data, a plausible molecular model of compound 1 in the active site of GyrB24 was constructed. The predicted binding mode explains the competitive inhibitory mechanism with respect to ATP and forms a useful basis for further development of potent DNA gyrase inhibitors.  相似文献   

3.
One of the major mechanisms followed by the therapeutic agents to target the causative organism of TB, mycobacterium tuberculosis (Mtb), involves disruption of the replication cycle of the pathogen DNA. The process involves two steps that occur simultaneously, ie, breakage and reunion of DNA at gyrase A (GyrA) domain and ATP hydrolysis at gyrase B (GyrB) domain. Current therapy for multi-drug resistant TB involves FDA approved, Fluoroquinolone-based antibiotics, which act by targeting the replication process at GyrA domain. However, resistance against fluoroquinolones due to mutations in the GyrA domain has limited the use of this therapy and shifted the focus of the research community on the GyrB domain. Thus, this study involves in silico designing of chemotherapeutic agents for resistant TB by targeting GyrB domain. In the current study, a pharmacophore model for GyrB domain was generated using reported inhibitors. It was utilized as a query search against three commercial databases to identify GyrB domain inhibitors. Additionally, a qualitative Hip-Hop pharmacophore model for GyrA was also developed on the basis of some marketed fluoroquinolone-based GyrA inhibitors, to remove non-selective gyrase inhibitors obtained in virtual screening. Further, molecular dynamic simulations were carried out to determine the stability of the obtained molecules in complex with both the domains. Finally, Molecular mechanics with generalized Born and surface area solvation score was calculated to determine the binding affinity of obtained molecule with both domains to determine the selectivity of the obtained molecules that resulted in seven putative specific inhibitors of GyrB domain.  相似文献   

4.
DNA gyrase is the only enzyme known to negatively supercoil DNA. The enzyme is a heterotetramer of A(2)B(2) subunit composition. Alignment of the primary sequence of gyrase B (GyrB) from various species shows that they can be grouped into two classes. The GyrB of Gram-negative eubacteria has a stretch of about 165 amino acids in the C-terminal half, which is lacking in other GyrB subunits and type II topoisomerases. In Escherichia coli, no function has so far been attributed to this stretch. In this study, we have tried to assess the function of this region both in vivo and in vitro. A deletant (GyrBDelta160) lacking this region is non-functional in vivo. The holoenzyme reconstituted from gyrase A (GyrA) and GyrBDelta160 shows reduced but detectable supercoiling and quinolone-induced cleavage activity in vitro. GyrBDelta160 retains its ability to bind to GyrA and novobiocin. However, when reconstituted with GyrA, the deletant shows greatly impaired DNA binding. The intrinsic ATPase activity of the GyrBDelta160 is comparable to that of wild type GyrB, but this activity is not stimulated by DNA. These studies indicate that the additional stretch present in GyrB is essential for the DNA binding ability of E. coli gyrase.  相似文献   

5.
The C-terminus region of the 1863 residue early onset of breast cancer gene 1 (BRCA1) nuclear protein contains a tandem globular carboxy terminus domain termed BRCT. The BRCT repeats in BRCA1 are phosphoserine- and/or phosphothreonine-specific binding modules. The interaction of the BRCT(BRCA1) domains with phosphorylated BRCA1-associated carboxyl terminal helicase (BACH1) is cell cycle regulated and is essential for DNA damage-induced checkpoint control during the transition from the G(2) phase to the M phase of the cell cycle. Development of a competitive, homogeneous, high-throughput fluorescence polarization (FP) assay to identify small molecule inhibitors of BRCT(BRCA1)-BACH1 interaction is reported here. The FP assay was used for measuring binding affinities and inhibition constants of BACH1 peptides and small molecule inhibitors of BRCT(BRCA1) domains, respectively. A fluorescently labeled wild-type BACH1 decapeptide (BDP1) containing the critical phosphoserine, a phenylalanine at (P+3), and a GST-BRCT fusion protein were used to establish the FP assay. BDP1 has a dissociation constant (K(d)) of 1.58+/-0.01microM and a dynamic range (DeltamP) of 164.9+/-1.9. The assay tolerates 20% dimethyl sulfoxide, which enables screening poorly soluble compounds. Under optimized conditions, a Z' factor of 0.87 was achieved in a 384-well format for high-throughput screening.  相似文献   

6.
Cyclothialidines are a class of bacterial DNA gyrase B (GyrB) subunit inhibitors, targeting its ATP-binding site. Starting from the available structural information on cyclothialidine GR122222X (2), an in silico virtual screening campaign was designed combining molecular docking calculations with three-dimensional structure-based pharmacophore information. A novel class of 2-amino-4-(2,4-dihydroxyphenyl)thiazole based inhibitors (59) with low micromolar antigyrase activity was discovered.  相似文献   

7.
We investigated the mode of action of ES-1273, a novel DNA gyrase inhibitor obtained by optimization of ES-0615, which was found by screening our chemical library using anucleate cell blue assay. ES-1273 exhibited the same antibacterial activity against S. aureus strains with amino acid change(s) conferring quinolone- and coumarin-resistance as that against a susceptible strain. In addition, ES-1273 inhibited DNA gyrase supercoiling activity, but not ATPase activity of the GyrB subunit of DNA gyrase. Moreover, ES-1273 did not induce cleavable complex. These findings demonstrate that the mechanism by which ES-1273 inhibits DNA gyrase is different from that of the quinolones or the coumarins. Preincubation of DNA gyrase and substrate DNA prevented inhibition of DNA gyrase supercoiling activity by ES-1273. ES-1273 antagonized quinolone-induced cleavage. In electrophoretic mobility shift assay, no band representing DNA gyrase-DNA complex was observed in the presence of ES-1273. Taken together, these results indicate that ES-1273 prevents DNA from binding to DNA gyrase. Furthermore, our results from surface plasmon resonance experiments strongly suggest that ES-1273 interacts with DNA. Therefore, the interaction between ES-1273 and DNA prevents DNA from binding to DNA gyrase, resulting in inhibition of DNA gyrase supercoiling. Interestingly, we also found that ES-1273 inhibits topoisomerase IV and human topoisomerase IIalpha, but not human topoisomerase I. These findings indicate that ES-1273 is a type II topoisomerase specific inhibitor.  相似文献   

8.
Bacterial DNA gyrase is an established and validated target for the development of novel antibacterials. In our previous work, we identified a novel series of bacterial gyrase inhibitors from the class of 4-(2,4-dihydroxyphenyl) thiazoles. Our ongoing effort was designated to search for synthetically more available compounds with possibility of hit to lead development. By using the virtual screening approach, new potential inhibitors were carefully selected from the focused chemical library and tested for biological activity. Herein we report on a novel class of 5-(2-hydroxybenzylidene) rhodanines as gyrase B inhibitors with activity in low micromolar range and moderate antibacterial activity. The binding of the two most active compounds to the enzyme target was further characterised using surface plasmon resonance (SPR) and differential scanning fluorimetry methods (DSF).  相似文献   

9.
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. However, growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.  相似文献   

10.
11.
Escherichia coli DNA gyrase is comprised of two subunits, GyrA and GyrB. Previous studies have shown that GyrI, a regulatory factor of DNA gyrase activity, inhibits the supercoiling activity of DNA gyrase and that both overexpression and antisense expression of the gyrI gene suppress cell proliferation. Here we have analyzed the interaction of GyrI with DNA gyrase using two approaches. First, immunoprecipitation experiments revealed that GyrI interacts preferentially with the holoenzyme in an ATP-independent manner, although a weak interaction was also detected between GyrI and the individual GyrA and GyrB subunits. Second, surface plasmon resonance experiments indicated that GyrI binds to the gyrase holoenzyme with higher affinity than to either the GyrA or GyrB subunit alone. Unlike quinolone antibiotics, GyrI was not effective in stabilizing the cleavable complex consisting of gyrase and DNA. Further, we identified an 8-residue synthetic peptide, corresponding to amino acids (89)ITGGQYAV(96) of GyrI, which inhibits gyrase activity in an in vitro supercoiling assay. Surface plasmon resonance analysis of the ITGGQYAV-containing peptide-gyrase interaction indicated a high association constant for this interaction. These results suggest that amino acids 89--96 of GyrI are essential for its interaction with, and inhibition of, DNA gyrase.  相似文献   

12.
A competitive fluorescence polarization (FP) assay has been developed for the serine/threonine kinase, AKT. The FP assay has been formatted in a 384-well microtiter plate and automated using a pipeting workstation with performance suitable for high-throughput screening. The assay design utilizes a fluorescent phosphorylated peptide complexed to a product-specific anti-phospho-serine antibody. When unlabeled substrate is phosphorylated, by the kinase, the product competes with the fluorescent phosphorylated peptide for the antibody. The fluorescent phosphorylated peptide is then released from the antibody into solution resulting in a loss in polarization signal. Seven fluorescent phosphorylated peptides and 19 antibodies were evaluated for this assay. RARTSpSFAEPGK-Fl peptide and anti-phospho-GSK-3alpha Ser21 antibody gave the best affinity and change in polarization signal. The apparent kinetic constants were calculated for the FP assay and were consistent with reported values. The FP assay was validated with known inhibitors and the results compared to a radioactive Flashplate transfer assay, utilizing [(33)P]ATP and a biotinylated substrate, also developed in our laboratory. The IC(50) values generated were comparable between the two methods suggesting the competitive FP assay and Flashplate assay have similar sensitivities and abilities to identify inhibitors during screening.  相似文献   

13.
Bacterial DNA gyrase, has been identified as the target of several antibacterial agents, including the coumarin drugs. The coumarins inhibit the gyrase action by competitive binding to the ATP-binding site of DNA gyrase B (GyrB) protein. The high in vitro inhibitory potency of coumarins against DNA gyrase reactions has raised interest in studies on coumarin-gyrase interactions. In this context, a series of low-molecular weight peptides, including the coumarin resistance-determining region of subunit B of Escherichia coli gyrase, has been designed and synthesized. The first peptide model was built using the natural fragment 131-146 of GyrB and was able to bind to novobiocin (K(a) = 1.8 +/- 0.2 x 10(5)/m) and ATP (K(a) = 1.9 +/- 0.4 x 10(3)/m). To build the other sequences, changes in the Arg(136) residue were introduced so that the binding to the drug was progressively reduced with the hydrophobicity of this residue (K(a) = 1.3 +/- 0.1 x 10(5)/m and 1.0 +/- 0.2 x 10(5)/m for Ser and His, respectively). No binding was observed for the change Arg(136) to Leu. In contrast, the binding to ATP was not altered, independently of the changes promoted. On the contrary, for peptide-coumarin and peptide-ATP complexes, Mg(2+) appears to modulate the binding process. Our results demonstrate the crucial role of Arg(136) residue for the stability of coumarin-gyrase complex as well as suggest a different binding site for ATP and in both cases the interactions are mediated by magnesium ions.  相似文献   

14.
This article describes the development of a simple and robust fluorescence polarization (FP)-based binding assay and adaptation to high-throughput identification of small molecules blocking dsRNA binding to NS1A protein (nonstructural protein 1 from type A influenza strains). This homogeneous assay employs fluorescein-labeled 16-mer dsRNA and full-length NS1A protein tagged with glutathione S-transferase to monitor the changes in FP and fluorescence intensity simultaneously. The assay was optimized for high-throughput screening in a 384-well format and achieved a z' score greater than 0.7. Its feasibility for high-throughput screening was demonstrated using the National Institutes of Health clinical collection. Six of 446 small molecules were identified as possible ligands in an initial screening. A series of validation tests confirmed epigallocatechine gallate (EGCG) to be active in the submicromolar range. A mechanism of EGCG inhibition involving interaction with the dsRNA-binding motif of NS1A, including Arg38, was proposed. This structural information is anticipated to provide a useful basis for the modeling of antiflu therapeutic reagents. Overall, the FP-based binding assay demonstrated its superior capability for simple, rapid, inexpensive, and robust identification of NS1A inhibitors and validation of their activity targeting NS1A.  相似文献   

15.
16.
We describe here the fragment-based design of potent DNA gyrase inhibitors. Using the tools of virtual screening and NMR spectroscopy we identified the binding of two low-molecular weight fragments (2-aminobenzimidazole and indolin-2-one) to the 24kDa N-terminal fragment of DNA gyrase B. Further in silico optimization of indolin-2-one led to the discovery of potent DNA gyrase inhibitors.  相似文献   

17.
Coumarins are inhibitors of the ATP hydrolysis and DNA supercoiling reactions catalysed by DNA gyrase. Their target is the B subunit of gyrase (GyrB), encoded by the gyrB gene. The exact mode and site of action of the drugs is unknown. We have identified four mutations conferring coumarin resistance to Escherichia coli: Arg-136 to Cys, His or Ser and Gly-164 to Val. In vitro, the ATPase and supercoiling activities of the mutant GyrB proteins are reduced relative to the wild-type enzyme and show resistance to the coumarin antibiotics. Significant differences in the susceptibility of mutant GyrB proteins to inhibition by either chlorobiocin and novobiocin or coumermycin have been found, suggesting wider contacts between coumermycin and GyrB. We discuss the significance of Arg-136 and Gly-164 in relation to the notion that coumarin drugs act as competitive inhibitors of the ATPase reaction.  相似文献   

18.
Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents.  相似文献   

19.
《Gene》1996,174(1):121-128
We have cloned and sequenced two overlapping DNA fragments (3236 bp) containing a gene encoding the ATPase subunit of a type II DNA topoisomerase from the hyperthermophilic bacterion Thermotoga maritima (Tm Top2B). The deduced protein is composed of 636 aa with a calculated molecular mass of 72 415 Da. It shares significant similarities with the ATPase subunits of mesophilic bacterial DNA topoisomerases II, either DNA gyrase (GyrB) or DNA topoisomerase IV (ParE). Although the highest similarity scores are obtained with GyrB proteins (55% identity with Bacillus subtilis DNA gyrase), a detailed phylogenetic analysis of all known DNA topoisomerases II does not allow us to determine if Tm Top2B corresponds to a DNA gyrase or a DNA topoisomerase IV. This hyperthermophilic Top2B protein exhibits a larger amount of charged amino acids than its mesophilic homologues, a feature which could be important for its thermostability. No gyrA-like gene has been found near top2B. A gene coding for a transaminase B-like protein was found in the upstream region of top2B.  相似文献   

20.
Dihydropteroate synthase (DHPS) is the classical target of the sulfonamide class of antimicrobial agents, whose use has been limited by widespread resistance and pharmacological side effects. We have initiated a structure-based drug design approach for the development of novel DHPS inhibitors that bind to the highly conserved and structured pterin subsite rather than to the adjacent p-aminobenzoic acid binding pocket that is targeted by the sulfonamide class of antibiotics. To facilitate these studies, a robust pterin site-specific fluorescence polarization (FP) assay has been developed and is discussed herein. These studies include the design, synthesis, and characterization of two fluorescent probes, and the development and validation of a rapid DHPS FP assay. This assay has excellent DMSO tolerance and is highly reproducible as evidenced by a high Z' factor. This assay offers significant advantages over traditional radiometric or phosphate release assays against this target, and is suitable for site-specific high-throughput and fragment-based screening studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号