首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore the role of the Rho GTPases in lens morphogenesis, we overexpressed bovine Rho GDP dissociation inhibitor (RhoGDIα), which serves as a negative regulator of Rho, Rac and Cdc42 GTPase activity, in a lens-specific manner in transgenic mice. This was achieved using a chimeric promoter of δ-crystallin enhancer and αA-crystallin, which is active at embryonic day 12. Several individual transgenic (Tg) lines were obtained, and exhibited ocular specific phenotype comprised of microphthalmic eyes with lens opacity. The overexpression of bovine RhoGDIα disrupted membrane translocation of Rho, Rac and Cdc42 GTPases in Tg lenses. Transgenic lenses also revealed abnormalities in the migration pattern, elongation and organization of lens fibers. These changes appeared to be associated with impaired organization of the actin cytoskeleton and cell-cell adhesions. At E14.5, the size of the RhoGDIα Tg lenses was larger compared to wild type (WT) and the central lens epithelium and differentiating fibers exhibited an abnormal increase of bromo-deoxy-uridine incorporation. Postnatal Tg eyes, however, were much smaller in size compared to WT eyes, revealing increased apoptosis in the disrupted lens fibers. Taken together, these data demonstrate a critical role for Rho GTPase-dependent signaling pathways in processes underlying morphogenesis, fiber cell migration, elongation and survival in the developing lens.  相似文献   

2.
Glutaredoxin 2 (Grx2) is an isozyme of glutaredoxin1 (thioltransferase) present in the mitochondria and nucleus with disulfide reductase and peroxidase activities, and it controls thiol/disulfide balance in cells. In this study, we investigated whether Grx2 gene deletion could induce faster age-related cataract formation and elucidated the biochemical changes effected by Grx2 gene deletion that may contribute to lens opacity. Slit lamp was used to examine the lenses in Grx2 knock-out (KO) mice and age-matched wild-type (WT) mice ages 1 to 16 months. In the Grx2 null mice, the lens nuclear opacity began at 5 months, 3 months sooner than that of the control mice, and the progression of cataracts was also much faster than the age-matched controls. Lenses of KO mice contained lower levels of protein thiols and GSH with a significant accumulation of S-glutathionylated proteins. Actin, αA-crystallin, and βB2-crystallin were identified by Western blot and mass spectroscopy as the major S-glutathionylated proteins in the lenses of 16-month-old Grx2 KO mice. Compared with the WT control, the lens of Grx2 KO mice had only 50% of the activity in complex I and complex IV and less than 10% of the ATP pool. It was concluded that Grx2 gene deletion altered the function of lens structural proteins through S-glutathionylation and also caused severe disturbance in mitochondrial function. These combined alterations affected lens transparency.  相似文献   

3.
Despite the enormous number of studies demonstrating changes in the chaperone-like activity of α-crystallins in vitro, little is known about how these changes influence life-long lens transparency in vivo. Using the γB-crystallin I4F mutant protein as a target for αA-crystallins, we examined how cataract phenotypes are modulated by interactions between α-crystallins with altered chaperone-like activities and γB-I4F proteins in vivo. Double heterozygous α-crystallin knock-out αA(+/-) αB(+/-) mice with a decreased amount of α-crystallins were used to simulate reduced total α-crystallin chaperone-like activity in vivo. We found that triple heterozygous αA(+/-) αB(+/-) γB(I4F/+) mice developed more severe whole cataracts than heterozygous γB(I4F/+) mice. Thus, total chaperone-like activity of α-crystallins is important for maintaining lens transparency. We further tested whether mutant αA-crystallin Y118D proteins with increased chaperone-like activity influenced the whole cataract caused by the γB-I4F mutation. Unexpectedly, compound αA(Y118D/+) γB(I4F/+) mutant lenses displayed severe nuclear cataracts, whereas the lens cortex remained unaffected. Thus, the synergistic effect of αA-Y118D and γB-I4F mutant proteins is detrimental to the transparency only in the lens core. α-Crystallins with different chaperone-like activities are likely required in the lens cortex and nucleus for maintaining transparency.  相似文献   

4.
The time and place of the accumulation of alpha A-, beta B1- and gamma-crystallin RNA in the developing rat lens have been studied by in situ hybridization. alpha A- and gamma-crystallin RNA were first detected in the lens vesicle, while beta B1-crystallin RNA could be seen only after elongation of the primary fiber cells. Both beta B1- and gamma-crystallin RNA were confined to the fiber cells of fetal lenses, while alpha A-crystallin mRNA could also be detected in the epithelial cells. A quantification of the hybridization pattern obtained in the differentiation zone of the newborn rat lens showed that alpha A-crystallin RNA is concentrated in the cortical zone. alpha B-crystallin mRNA has the same distribution pattern. beta B1-crystallin RNA was relatively poorly detectable by in situ hybridization in both fetal and newborn rat lenses. The grain densities obtained with this probe increased from the periphery of the lens toward the interior, indicating that beta B1-crystallin RNA accumulated during differentiation of the secondary fiber cells. A similar accumulation pattern was obtained for gamma-crystallin mRNA, but, unexpectedly, this RNA could also be detected in the elongating epithelial cells. Our results show that gamma-crystallin RNA starts to accumulate as soon as visible elongation of epithelial cells occurs, during differentiation of the primary as well as the secondary fiber cells.  相似文献   

5.
The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency.  相似文献   

6.
α-Crystallin is a major protein in the human lens that is perceived to help to maintain the transparency of the lens through its chaperone function. In this study, we demonstrate that many lens proteins including αA-crystallin are acetylated in vivo. We found that K70 and K99 in αA-crystallin and, K92 and K166 in αB-crystallin are acetylated in the human lens. To determine the effect of acetylation on the chaperone function and structural changes, αA-crystallin was acetylated using acetic anhydride. The resulting protein showed strong immunoreactivity against a N(ε)-acetyllysine antibody, which was directly related to the degree of acetylation. When compared to the unmodified protein, the chaperone function of the in vitro acetylated αA-crystallin was higher against three of the four different client proteins tested. Because a lysine (residue 70; K70) in αA-crystallin is acetylated in vivo, we generated a protein with an acetylation mimic, replacing Lys70 with glutamine (K70Q). The K70Q mutant protein showed increased chaperone function against three client proteins compared to the Wt protein but decreased chaperone function against γ-crystallin. The acetylated protein displayed higher surface hydrophobicity and tryptophan fluorescence, had altered secondary and tertiary structures and displayed decreased thermodynamic stability. Together, our data suggest that acetylation of αA-crystallin occurs in the human lens and that it affects the chaperone function of the protein.  相似文献   

7.
The αA-crystallin gene is expressed in a highly lens preferred manner. Here we show that the mouse αA-crystallin −1809/+46 promoter fragment displays lens-preferred activity in transgenic mice and in stably transfected lens cells. These findings are in contrast to the lack of activity of this promoter previously reported in transiently transfected lens cells. Our current findings suggest that the −1809/+46 mouse αA-crystallin promoter functions in a lens preferred manner when stably integrated into chromatin.  相似文献   

8.
To determine the effects of deamidation on structural and functional properties of alphaA-crystallin, three mutants (N101D, N123D, and N101D/N123D) were generated. Deamidated alphaB-crystallin mutants (N78D, N146D, and N78D/N146D), characterized in a previous study (Gupta, R., and Srivastava, O. P. (2004) Invest. Ophthalmol. Vis. Sci. 45, 206-214) were also used. The biophysical and chaperone properties were determined in (a) homoaggregates of alphaA mutants (N101D, N123D, and N101D/N123D) and (b) reconstituted heteroaggregates of alpha-crystallin containing (i) wild type alphaA (WT-alphaA): WT-alphaB crystallins, (ii) individual alphaA-deamidated mutants:WT-alphaB crystallins, and (iii) WT-alphaA:individual alphaB-deamidated mutant crystallins. Compared with the WT-alphaA, the three alphaA-deamidated mutants showed reduced levels of chaperone activity, alterations in secondary and tertiary structures, and larger aggregates. These altered properties were relatively more pronounced in the mutant N101D compared with the mutant N123D. Further, compared with heteroaggregates of WT-alphaA and WT-alphaB, the heteroaggregates containing deamidated subunits of either alphaA- or alphaB-crystallins and their counterpart WT proteins showed higher molecular mass, altered tertiary structures, lower exposed hydrophobic surfaces, and reduced chaperone activity. However, the heteroaggregate containing WT-alphaA and deamidated alphaB subunit showed lower chaperone activity, smaller oligomers, and 3-fold lower subunit exchange rate than heteroaggregate containing deamidated alphaA- and WT-alphaB subunits. Together, the results suggested that (a) both Asn residues (Asn-101 and Asn-123) are required for the structural integrity and chaperone function of alphaA-crystallin and (b) the presence of WT-alphaB in the alpha-crystallin heteroaggregate leads to packing-induced structural changes which influences the oligomerization and modulate chaperone activity.  相似文献   

9.
Sex steroids influence the structural and functional organization of ocular tissues, promote survival in several pathological conditions including retinal neurodegeneration and have a prominent role in age-related eye diseases as well as neurodegenerative diseases. However, their underlying mechanisms are still elusive. We explored proteomic profiling of rat retinas following intravitreal injection of the bioactive 17β-estradiol or androgen dihydrotestosterone. Using narrow range 2-DE gels and MALDI-TOF-MS analysis, we identified three sex steroid-regulated proteins: the galectin-related-inter-fiber (GRIFIN) which is a galectin family member protein of unknown function, the fatty acid-binding protein epidermal-5 (FABP5) protein responsible for the fatty acid uptake and transport and the small heat shock αA-crystallin (CRYAA) protein involved in preventing aggregation of denatured or unfolded proteins. Changes in the expression of these proteins revealed a predominant estrogenic effect and the multiple CRYAA protein species reflected posttranslational modifications. Sex steroid-mediated modifications of CRYAA were confirmed by Western blotting analysis. This study provides new target proteins for sex steroids with a potential link to age-related diseases associated with proteotoxic stress.  相似文献   

10.
The vertebrate lens provides anin vivomodel to study the molecular mechanisms by which growth factors influence development decisions. In this study, we have investigated the expression patterns of platelet-derived growth factor (PDGF) and PDGF receptors during murine eye development byin situhybridization. Postnatally, PDGF-A is highly expressed in the iris and ciliary body, the ocular tissues closest to the germinative zone of the lens, a region where most proliferation of lens epithelial cells occurs. PDGF-A is also present in the corneal endothelium anterior to the lens epithelium in embryonic and early postnatal eyes. PDGF-B is expressed in the iris and ciliary body as well as in the vascular cells which surround the lens during early eye development. In the lens, expression of PDGF-α receptor (PDGF-αR), a receptor that can bind both PDGF-A and PDGF-B, is restricted to the lens epithelium throughout life. The expression of PDGF-αR in the lens epithelial cells and PDGF (A- and B-chains) in the ocular tissues adjacent to the lens suggests that PDGF signaling may play a key role in regulating lens development. To further examine how PDGF affects lens developmentin vivo,we generated transgenic mice that express human PDGF-A in the lens under the control of the αA-crystallin promoter. The transgenic mice exhibit lenticular defects that result in cataracts. The percentage of surface epithelial cells in S-phase is increased in transgenic lenses compared to their nontransgenic littermates. Higher than normal levels of cyclin A and cyclin D2 expression were also detected in transgenic lens epithelium. These results together suggest that PDGF-A can induce a proliferative response in lens epithelial cells. The lens epithelial cells in the transgenic mice also exhibit characteristics of differentiating fiber cells. For example, the transgenic lens epithelial cells are slightly elongated, contain larger and less condensed nuclei, and express fiber-cell-specific β-crystallins. Our results suggest that PDGF-A normally acts as a proliferative factor for the lens epithelial cellsin vivo.Elevated levels of PDGF-A enhance proliferation, but also appear to induce some aspects of the fiber cell differentiation pathway.  相似文献   

11.
The accumulation of crystallin fragments in vivo and their subsequent interaction with crystallins are responsible, in part, for protein aggregation in cataracts. Transgenic mice overexpressing acylpeptide hydrolase (APH) specifically in the lens were prepared to test the role of protease in the generation and accumulation of peptides. Cataract development was seen at various postnatal days in the majority of mice expressing active APH (wt-APH). Cataract onset and severity of the cataracts correlated with the APH protein levels. Lens opacity occurred when APH protein levels were >2.6% of the total lens protein and the specific activity, assayed using Ac-Ala-p-nitroanilide substrate, was >1 unit. Transgenic mice carrying inactive APH (mt-APH) did not develop cataract. Cataract development also correlated with N-terminal cleavage of the APH to generate a 57-kDa protein, along with an increased accumulation of low molecular weight (LMW) peptides, similar to those found in aging human and cataract lenses. Nontransgenic mouse lens proteins incubated with purified wt-APH in vitro resulted in a >20% increase in LMW peptides. Crystallin modifications and cleavage were quite dramatic in transgenic mouse lenses with mature cataract. Affected lenses showed capsule rupture at the posterior pole, with expulsion of the lens nucleus and degenerating fiber cells. Our study suggests that the cleaved APH fragment might exert catalytic activity against crystallins, resulting in the accumulation of distinct LMW peptides that promote protein aggregation in lenses expressing wt-APH. The APH transgenic model we developed will enable in vivo testing of the roles of crystallin fragments in protein aggregation.  相似文献   

12.
The optical properties of the lens are dependent upon the integrity of proteins within the fiber cells. During aging, crystallins, the major intra-cellular structural proteins of the lens, aggregate and become water-insoluble. Modifications to crystallins and the lens intermediate filaments have been implicated in this phenomenon. In this study, we examined changes to, and interactions between, human lens crystallins and intermediate filament proteins in lenses from a variety of age groups (0-86years). Among the lens-specific intermediate filament proteins, filensin was extensively cleaved in all postnatal lenses, with truncated products of various sizes being found in both the lens cortical and nuclear extracts. Phakinin was also truncated and was not detected in the lens nucleus. The third major intermediate filament protein, vimentin, remained intact in lens cortical fiber cells across the age range except for an 86year lens, where a single ~49kDa breakdown product was observed. An αB-crystallin fusion protein (maltose-binding protein-αB-crystallin) was found to readily exchange subunits with endogenous α-crystallin, and following mild heat stress, to bind to filensin, phakinin and vimentin and to several of their truncated products. Tryptic digestion of a truncated form of filensin suggested that the binding site for α-crystallin may be in the N-terminal region. The presence of significant amounts of small peptides derived from γS- and βB1-crystallins in the water-insoluble fraction of the lens indicates that these interact tightly with cytoskeletal or membrane components. Interestingly, water-soluble complexes (~40kDa) contained predominantly γS- and βB1-crystallins, suggesting that cross-linking is an alternative pathway for modified β- and γ-crystallins in the lens.  相似文献   

13.
Zhang Y  Liu X  Liu J 《FEBS letters》2005,579(13):2897-2900
α-Crystallin is one of the major protein components in mammalian lens fiber cells. It is composed of αA and αB subunits that have structural homology to the family of mammalian small heat shock proteins. Horwitz firstly characterized native α-crystallin as a molecular chaperone in vitro based on its ability to prevent heat-induced aggregation of lens proteins and enzymes. Andley et al. cloned and expressed human αA-crystallin in Escherichia coli and confirmed its chaperone activity by suppression of thermal aggregation and singlet oxygen-induced opacification. Although αA-crystallin acts as a chaperone protein, there is no report showing on its ability to protect enzymes against thermal inactivation. Here, we present data showing that αA-crystallin can prevent thermal inactivation of CpUDG that catalyzes uracil removal from DNAs.  相似文献   

14.
Chen YH  Lee MT  Cheng YW  Chou WY  Yu CM  Lee HJ 《Biochimie》2011,93(2):314-320
δ-Crystallin is a taxon-specific eye lens protein that was recruited from argininosuccinate lyase (ASL) through gene sharing. ASL is a metabolic enzyme that catalyzes the reversible conversion of argininosuccinate into arginine and fumarate and shares about 70% sequence identity and similar overall topology with δ-crystallin. ASL has a lower thermal stability than δ-crystallin. In this study, we show that the small heat shock protein, αA-crystallin, functions as a molecular chaperone, and enhanced thermal stability of both δ-crystallin and ASL. The stoichiometry for efficient protection of the two substrate proteins by αA-crystallin was determined by slowly increasing the temperature. N- or C-terminal truncated mutants of δ-crystallin co-incubated with αA-crystallin showed higher thermal stability than wild-type enzyme, and the stoichiometry for efficient protection was the same. Thermal unfolding of δ-crystallin or ASL in the presence of αA-crystallin followed a similar three-state model, as determined by circular dichroism analyses. A stable intermediate which retained about 30% α-helical structure was observed. Protection from thermal denaturation by αA-crystallin was by interaction with partly unfolded ASL or δ-crystallin to form high molecular weight heteroligomers, as judged by size-exclusive chromatography and SDS-PAGE analyses. Aggregate formation of ASL was significantly reduced in the presence of αA-crystallin. The extent of protection of ASL and δ-crystallin at different ratios of αA-crystallin were described by hyperbolic and sigmoidal curves, respectively. These results suggest the preferential recognition of partly unfolded ASL by αA-crystallin. In contrast, unstable δ-crystallin might trigger a cooperative interaction by higher stoichiometries of αA-crystallin leading to fuller protection. The different interactions of αA-crystallin with the two homologous but functionally different substrate proteins show its behavior as a chaperone is variable.  相似文献   

15.
Development of lens opacities and the measures taken to avoid them have clinical relevance in the fields of oncology, radiotherapy and radiation protection. The aim of this study was to correlate the prevalence of lenticular opacities in individuals exposed to ionizing radiation in childhood with radiation dose and other possible risk factors. Between 1920 and 1959, about 16,500 children (age <18 months) with skin hemangiomas were referred to Radiumhemmet, Karolinska University Hospital, 89% of whom were treated with radiotherapy. A total of 484 exposed individuals and 89 nonexposed controls participated in an ophthalmological examination. Lens opacities were found in 357 (37%) of the 953 lenses examined in the exposed persons. In contrast, lens opacities were observed in only 35 (20%) of the 178 lenses examined in the nonexposed control individuals. It is concluded that the increased prevalence of cortical and posterior subcapsular opacities is related to previous radiotherapy. Age at examination was the strongest modifier of risk. Children exposed to a lenticular dose of 1 Gy had a 50% increased risk (odds ratio 1.50; 95% confidence interval 1.10-2.05) of developing a posterior subcapsular opacity and a 35% increased risk of a cortical opacity (odds ratio 1.35; 95% confidence interval 1. 07- 1.69).  相似文献   

16.
Cheng C  Gong X 《PloS one》2011,6(11):e28147
Recent genetic studies show that the Eph/ephrin bidirectional signaling pathway is associated with both congenital and age-related cataracts in mice and humans. We have investigated the molecular mechanisms of cataractogenesis and the roles of ephrin-A5 and EphA2 in the lens. Ephrin-A5 knockout (-/-) mice often display anterior polar cataracts while EphA2(-/-) lenses show very mild cortical or nuclear cataracts at weaning age. The anterior polar cataract of ephrin-A5(-/-) lenses is correlated with multilayers of aberrant cells that express alpha smooth muscle actin, a marker for mesenchymal cells. Only select fiber cells are altered in ephrin-A5(-/-) lenses. Moreover, the disruption of membrane-associated β-catenin and E-cadherin junctions is observed in ephrin-A5(-/-) lens central epithelial cells. In contrast, EphA2(-/-) lenses display normal monolayer epithelium while disorganization is apparent in all lens fiber cells. Immunostaining of ephrin-A5 proteins, highly expressed in lens epithelial cells, were not colocalized with EphA2 proteins, mainly expressed in lens fiber cells. Besides the previously reported function of ephrin-A5 in lens fiber cells, this work suggests that ephrin-A5 regulates β-catenin signaling and E-cadherin to prevent lens anterior epithelial cells from undergoing the epithelial-to-mesenchymal transition while EphA2 is essential for controlling the organization of lens fiber cells through an unknown mechanism. Ephrin-A5 and EphA2 likely interacting with other members of Eph/ephrin family to play diverse functions in lens epithelial cells and/or fiber cells.  相似文献   

17.
Calf lens αA-crystallin isolated by reversed-phase HPLC demonstrates a slightly more hydrophobic profile than αB-crystallin. Fluorescent probes in addition to bis-ANS, like cis-parinaric acid (PA) and pyrene, show higher quantum yields or Ham ratios when bound to αA-crystallin than to αB-crystallin at room temperature. Bis-ANS binding to both αA- and αB-crystallin decreases with increase in temperature. At room temperature, the chaperone-like activity of αA-crystallin is lower than that of αB-crystallin whereas at higher temperatures, αA-crystallin shows significantly higher protection against aggregation of substrate proteins compared to αB-crystallin. Therefore, calf lens αA-crystallin is more hydrophobic than αB-crystallin and chaperone-like activity of α-crystallin subunits is not quantitatively related to their hydrophobicity.  相似文献   

18.
Although myc family genes are differentially expressed during development, their expression frequently overlaps, suggesting that they may serve both distinct and common biological functions. In addition, alterations in their expression occur at major developmental transitions in many cell lineages. For example, during mouse lens maturation, the growth arrest and differentiation of epithelial cells into lens fiber cells is associated with a decrease in L- and c-myc expression and a reciprocal rise in N-myc levels. To determine whether the down-regulation of L- and c-myc are required for mitotic arrest and/or completion of differentiation and whether these genes have distinct or similar activities in the same cell type, we have studied the consequences of forced L- and c-myc expression in the lens fiber cell compartment using the alpha A-crystallin promoter in transgenic mice (alpha A/L-myc and alpha A/c-myc mice). With respect to morphological and molecular differentiation, alpha A/L-myc lenses were characterized by a severely disorganized lens fiber cell compartment and a significant decrease in the expression of a late-stage differentiation marker (MIP26); in contrast, differentiation appeared to be unaffected in alpha A/c-myc mice. Furthermore, an analysis of proliferation indicated that while alpha A/L-myc fiber cells withdrew properly from the cell cycle, inappropriate cell cycle progression occurred in the lens fiber cell compartment of alpha A/c-myc mice. These observations indicate that continued late-stage expression of L-myc affected differentiation processes directly, rather than indirectly through deregulated growth control, whereas constitutive c-myc expression inhibited proliferative arrest, but did not appear to disturb differentiation. As a direct corollary, our data indicate that L-Myc and c-Myc are involved in distinct physiological processes in the same cell type.  相似文献   

19.
The purpose of the study was to compare the effects of deamidation alone, truncation alone, or both truncation and deamidation on structural and functional properties of human lens alphaA-crystallin. Specifically, the study investigated whether deamidation of one or two sites in alphaA-crystallin (i.e., alphaA-N101D, alphaA-N123D, alphaA-N101/123D) and/or truncation of the N-terminal domain (residues 1-63) or C-terminal extension (residues 140-173) affected the structural and functional properties relative to wild-type (WT) alphaA. Human WT-alphaA and human deamidated alphaA (alphaA-N101D, alphaA-N123D, alphaA-N101/123D) were used as templates to generate the following eight N-terminal domain (residues 1-63) deleted or C-terminal extension (residues 140-173) deleted alphaA mutants and deamidated plus N-terminal domain or C-terminal extension deleted mutants: (i) alphaA-NT (NT, N-terminal domain deleted), (ii) alphaA-N101D-NT, (iii) alphaA-N123D-NT, (iv) alphaA-N101/123D-NT, (v) alphaA-CT (CT, C-terminal extension deleted), (vi) alphaA-N101D-CT, (vii) alphaA-N123D-CT, and (viii) alphaA-N101/123D-CT. All of the proteins were purified and their structural and functional (chaperone activity) properties determined. The desired deletions in the alphaA-crystallin mutants were confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric analysis. Relative to WT-alphaA homomers, the mutant proteins exhibited major structural and functional changes. The maximum decrease in chaperone activity in homomers occurred on deamidation of N123 residue, but it was substantially restored after N- or C-terminal truncations in this mutant protein. Far-UV circular dichroism (CD) spectral analyses generally showed an increase in the beta-contents in alphaA mutants with deletions of N-terminal domain or C-terminal extension and also with deamidation plus above N- or C-terminal deletions. Intrinsic tryptophan (Trp) and total fluorescence spectral studies suggested altered microenvironments in the alphaA mutant proteins. Similarly, the ANS (8-anilino-1-naphthalenesulfate) binding showed generally increased fluorescence with blue shift on deletion of the N-terminal domain in the deamidated mutant proteins, but opposite effects were observed on deletion of the C-terminal extension. Molecular mass, polydispersity of homomers, and the rate of subunit exchange with WT-alphaB-crystallin increased on deletion of the C-terminal extension in the deamidated alphaA mutants, but on N-terminal domain deletion these values showed variable results based on the deamidation site. In summary, the data suggested that the deamidation alone showed greater effect on chaperone activity than the deletion of N-terminal domain or C-terminal extension of alphaA-crystallin. The N123 residue of alphaA-crystallin plays a crucial role in maintaining its chaperone function. However, both the N-terminal domain and C-terminal extension are also important for the chaperone activity of alphaA-crystallin because the activity was partially or fully recovered following either deletion in the alphaA-N123D mutant. The results of subunit exchange rates among alphaA mutants and WT-alphaB suggested that such exchange is an important determinant in maintenance of chaperone activity following deamidation and/or deletion of the N-terminal domain or C-terminal extension in alphaA-crystallin.  相似文献   

20.
Glutathione peroxidase-1 (GPX-1) is an enzyme that protects the lens against H2O2-mediated oxidative damage. The purpose of the present study was to determine the effects of GPX-1 knockout (KO) on lens transport and intracellular homeostasis. To investigate these lenses we used (1) whole lens impedance studies to measure membrane conductance, resting voltage and fiber cell gap junction coupling conductance; (2) osmotic swelling of fiber cell membrane vesicles to determine water permeability; and (3) injection of Fura2 and Na+-binding benzofuran isophthalate (SBFI) into fiber cells to measure [Ca2+] i and [Na+] i , respectively, in intact lenses. These approaches were used to compare wild-type (WT) and GPX-1 KO lenses from mice around 2 months of age. There were no significant differences in clarity, size, resting voltage, membrane conductance or fiber cell membrane water permeability between WT and GPX-1 KO lenses. However, in GPX-1 KO lenses, coupling conductance was 72% of normal in the outer shell of differentiating fibers and 45% of normal in the inner core of mature fibers. Quantitative Western blots showed that GPX-1 KO lenses had about 50% as much labeled Cx46 and Cx50 protein as WT, whereas they had equivalent labeled AQP0 protein as WT. Both Ca2+ and Na+ accumulated significantly in the core of GPX-1 KO lenses. In summary, the major effect on lens transport of GPX-1 KO was a reduction in gap junction coupling conductance. This reduction affected the lens normal circulation by causing [Na+] i and [Ca2+] i to increase, which could increase cataract susceptibility in GPX-1 KO lenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号