首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Summary A quantative cytochemical assay for PPi-PFK activity in the presence of Fru-2,6-P2 is described along with its application to determine levels of activity in embryos of Pisum sativum and Avena sativa. The activity of ATP-PFK has also been studied in parallel as have PFK activities during the switch from dormant to non-dormant embryos in Avena sativa. PPi-PFK activity, has been demonstrated in all tissues of Pisum sativum embryos and of Avena sativa embryos including the scutellum and the aleurone layers. The PPi-PFK activity was greater than that of ATP-PFK in both dormant and non-dormant seeds though with only marginally more activity in the dormant as opposed to the non-dormant state.Abbreviations AMP adenosine monophosphate - ATP adenosine triphosphate - Fru-1,6-P2 fructose 1,6-bisphosphate - Fru-2,6-P2 fructose 2,6-bisphosphate - Fru-6-P fructose 6-phosphate - FB Pase 2 fructose 2,6-bisphosphatase (EC 3.1.3.46) - Gl-3-PD glyceraldehyde-3-phosphate dehydrogenase - NAD nicotinamide adenine dinucleotide - NBT nitroblue tetrazolium - PEP phosphoenolpyruvate - PFK 6-phosphofructokinase (EC 2.7.1.11) - PFK2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PPi pyrophosphate - PPi-PFK pyrophosphate: fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) - PVA polyvinyl alcohol (G04/140 Wacke Chemical Company)  相似文献   

2.
Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to “short” bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution.  相似文献   

3.
Plant cells have two cytoplasmic pathways of glycolysis and gluconeogenesis for the reversible interconversion of fructose 6-phosphate (F-6-P) and fructose 1,6-bisphosphate (F-1,6-P2). One pathway is described as a maintenance pathway that is catalyzed by a nucleotide triphosphate-dependent phosphofructokinase (EC 2.7.1.11; ATP-PFK) glycolytically and a F-1,6 bisphosphatase (EC 3.1.3.11) gluconeogenically. These are non-equilibrium reactions that are energy consuming. The second pathway, described as an adaptive pathway, is catalyzed by a readily reversible pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90; PP-PFK) in an equilibrium reaction that conserves energy through the utilization and the synthesis of pyrophosphate. A constitutive regulator cycle is also present for the synthesis and hydrolysis of fructose 2,6-bisphosphate (F-2,6-P2) via a 2-kinase and a 2-phosphatase, respectively. The pathway catalyzed by the ATP-PFK and F-1,6-bisphosphatase, the maintenance pathway, is fairly constant in maximum activity in various plant tissues and shows less regulation by F-2,6-P2. Plants use F-2,6-P2 initially to regulate the adaptive pathway at the reversible PPi-PFK step. The adaptive pathway, catalyzed by PPi-PFK, varies in maximum activity with a variety of phenomena such as plant development or changing biological and physical environments. Plants can change F-2,6-P2 levels rapidly, in less than 1 min when subjected to rapid environmental change, or change levels slowly over periods of hours and days as tissues develop. Both types of change enable plants to cope with the environmental and developmental changes that occur during their lifetimes. The two pathways of sugar metabolism can be efficiently linked by the cycling of uridylates and pyrophosphate required for sucrose breakdown via a proposed sucrose synthase pathway. The breakdown of sucrose via the sucrose synthase pathway requires half the net energy of breakdown via the invertase pathway. Pyrophosphate occurs in plant tissues as a substrate pool for biosynthetic reactions such as the PPi-PFK or uridine diphosphate glucose pyrophosphorylase (EC 2.7.7.9; UDPG pyrophosphorylase) that function in the breakdown of imported sucrose. Also, pyrophosphate links the two glycolytic/gluco-neogenic pathways; and in a reciprocal manner pyrophosphate is produced as an energy source during gluconeogenic carbon flow from F-1,6-P2 toward sucrose synthesis.  相似文献   

4.
Flux into the glycolytic pathway of most cells is controlled via allosteric regulation of the irreversible, committing step catalyzed by ATP-dependent phosphofructokinase (PFK) (ATP-PFK; EC 2.7.1.11), the key enzyme of glycolysis. In some organisms, the step is catalyzed by PPi-dependent PFK (PPi-PFK; EC 2.7.1.90), which uses PPi instead of ATP as the phosphoryl donor, conserving ATP and rendering the reaction reversible under physiological conditions. We have determined the enzymic properties of PPi-PFK from the anaerobic, hyperthermophilic archaeon Thermoproteus tenax, purified the enzyme to homogeneity, and sequenced the gene. The ∼100-kDa PPi-PFK from T. tenax consists of 37-kDa subunits; is not regulated by classical effectors of ATP-PFKs such as ATP, ADP, fructose 2,6-bisphosphate, or metabolic intermediates; and shares 20 to 50% sequence identity with known PFK enzymes. Phylogenetic analyses of biochemically characterized PFKs grouped the enzymes into three monophyletic clusters: PFK group I represents only classical ATP-PFKs from Bacteria and Eucarya; PFK group II contains only PPi-PFKs from the genus Propionibacterium, plants, and amitochondriate protists; whereas group III consists of PFKs with either cosubstrate specificity, i.e., the PPi-dependent enzymes from T. tenax and Amycolatopsis methanolica and the ATP-PFK from Streptomyces coelicolor. Comparative analyses of the pattern of conserved active-site residues strongly suggest that the group III PFKs originally bound PPi as a cosubstrate.As first discovered in Entamoeba histolytica (27), in some members of all three domains of life (Bacteria, Eucarya, and Archaea), the first committing step of glycolysis, the phosphorylation of fructose 6-phosphate (Fru 6-P), is catalyzed not by common ATP-dependent phosphofructokinase (PFK) (ATP-PFK; EC 2.7.1.11) but by an enzyme which uses PPi as a phosphoryl donor (PPi-PFK; EC 2.7.1.90) (2234). The only archaeal PPi-PFK described so far is the enzyme of Thermoproteus tenax, a hyperthermophilic, anaerobic archaeon which is able to grow chemolithotrophically with CO2, H2, and S0, as well as chemo-organothrophically in the presence of S0 and carbohydrates (11, 41). As shown by enzymatic and in vivo studies (pulse-labeling experiments), T. tenax metabolizes glucose mainly via a variation of the Embden-Meyerhof-Parnas pathway distinguished by the reversible PPi-PFK reaction (34, 35).In contrast to the virtually irreversible reaction catalyzed by the ATP-PFK, the phosphorylation by PPi is reversible. Thus, for thermodynamic reasons, the PPi-PFK should be able to replace the enzymes of both the forward (ATP-PFK) and reverse (fructose-bisphosphatase [FBPase]) reactions. Consistent with the presumed bivalent function of the PPi-dependent enzyme, in prokaryotes and parasitic protists which possess PPi-PFK, little, if any, ATP-PFK or FBPase activity is present. Strikingly, the PPi-PFKs of these organisms proved to be nonallosteric, suggesting that the control of the carbon flux through the pathway is no longer exerted by the PFK in these organisms. A considerably different situation has been described for higher plants and the green alga Euglena gracilis, showing comparable ATP-PFK, FBPase, and PPi-PFK activities and allosteric regulation of their PPi-dependent enzyme by fructose 2,6-bisphosphate (12, 22). However, in most cases it is not obvious which physiological role PPi-PFK performs: reversible catalysis of glycolysis/gluconeogenesis, increase of the energy yield of glycolysis under certain conditions in which the energy charge is low, or ATP-conservation in obligately fermentative organisms (22).Closely related to questions concerning the biological function of PPi-PFKs is the matter of their evolutionary origin: are these enzymes the result of a secondary adaptation from ATP-PFKs, or do they represent an original phenotype, as suggested by their specificity for PPi, which is thought to be an ancient source of metabolic energy (9, 18, 19, 26). Indicated by sequence similarity (3, 4), all known PPi- and ATP-PFKs are homologous and therefore originated from a common ancestral root. From more recent studies of Streptomyces coelicolor PFK (4), the previous assumption of a single event which separated PPi- and ATP-PFKs had to be revised in favor of a multiple differentiation, leaving open, however, the question of the primary or secondary origin of PPi-PFK.Understanding of PFK evolution has been impaired by a lack of knowledge concerning archaeal PFK, although the existence of ATP-PFK (31), PPi-PFK (34), and also ADP-dependent PFK (16, 31) in Archaea has been described. To address the evolution of PFK, we describe the PPi-PFK from T. tenax and compare its sequence and structure to those of known bacterial and eucaryal PFK enzymes.  相似文献   

5.
The pyrophosphate-dependent phosphofructokinase (PPi-PFK) of the amitochondriate protist Trichomonas vaginalis has been purified. The enzyme is a homotetramer of about 50 kDa subunits and is not subject to allosteric regulation. The protein was fragmented and a number of peptides were sequenced. Based on this information a PCR product was obtained from T. vaginalis gDNA and used to isolate corresponding cDNA and gDNA clones. Southern analysis indicated the presence of five genes. One open reading frame (ORF) was completely sequenced and for two others the 5′ half of the gene was determined. The sequences were highly similar. The complete ORF corresponded to a polypeptide of about 46 kDa. All the peptide sequences obtained were present in the derived sequences. The complete ORF was highly similar to that of other PFKs, primarily in its amino-terminal half. The T. vaginalis enzyme was most similar to PPi-PFK of the mitochondriate heterolobosean, Naegleria fowleri. Most of the residues shown or assumed to be involved in substrate binding in other PPi-PFKs were conserved in the T. vaginalis enzyme. Direct comparison and phylogenetic reconstruction revealed a significant divergence among PPi-PFKs and related enzymes, which can be assigned to at least four distantly related groups, three of which contain enzymes of protists. The separation of these groups is supported with a high percentage of bootstrap proportions. The short T. vaginalis PFK shares a most recent common ancestor with the enzyme from N. fowleri. This pair is clearly separated from a group comprising the long (>60-kDa) enzymes from Giardia lamblia, Entamoeba histolytica pfk2, the spirochaetes Borrelia burgdorferi and Trepomena pallidum, as well as the α- and β-subunits of plant PPi-PFKs. The third group (``X') containing protist sequences includes the glycosomal ATP-PFK of Trypanosoma brucei, E. histolytica pfk1, and a second sequence from B. burgdorferi. The fourth group (``Y') comprises cyanobacterial and high-G + C, Gram-positive eubacterial sequences. The well-studied PPi-PFK of Propionibacterium freudenreichii is highly divergent and cannot be assigned to any of these groups. These four groups are well separated from typical ATP-PFKs, the phylogenetic analysis of which confirmed relationships established earlier. These findings indicate a complex history of a key step of glycolysis in protists with several early gene duplications and possible horizontal gene transfers. Received: 5 December 1997 / Accepted: 18 March 1998  相似文献   

6.
Trypanosoma cruzi infection leads to development of a chronic disease but the mechanisms that the parasite utilizes to establish a persistent infection despite activation of a potent immune response by the host are currently unknown. Unusual characteristics of T. cruzi are that it possesses cellular levels of pyrophosphate (PPi) at least 10 times higher than those of ATP and molar levels of inorganic polyphosphate (polyP) within acidocalcisomes. We characterized an inorganic soluble EF‐hand containing pyrophosphatase from T. cruzi (TcVSP) that, depending on the pH and cofactors, can hydrolyse either pyrophosphate (PPi) or polyphosphate (polyP). The enzyme is localized to both acidocalcisomes and cytosol. Overexpression of TcVSP (TcVSP‐OE) resulted in a significant decrease in cytosolic PPi, and short and long‐chain polyP levels. Additionally, the TcVSP‐OE parasites showed a significant growth defect in fibroblasts, less responsiveness to hyperosmotic stress, and reduced persistence in tissues of mice, suggesting that PPi and polyP are essential for the parasite to resist the stressful conditions in the host and to maintain a persistent infection.  相似文献   

7.
Cells of the actinomycete Amycolatopsis methanolica grown on glucose possess only a single, exclusively PP(i)-dependent phosphofructokinase (PP(i)-PFK) (A. M. C. R. Alves, G. J. W. Euverink, H. J. Hektor, J. van der Vlag, W. Vrijbloed, D.H.A. Hondmann, J. Visser, and L. Dijkhuizen, J. Bacteriol. 176:6827-6835, 1994). When this methylotrophic bacterium is grown on one-carbon (C(1)) compounds (e.g., methanol), an ATP-dependent phosphofructokinase (ATP-PFK) activity is specifically induced, completely replacing the PP(i)-PFK. The two A. methanolica PFK isoenzymes have very distinct functions, namely, in the metabolism of C(6) and C(1) carbon substrates. This is the first report providing biochemical evidence for the presence and physiological roles of PP(i)-PFK and ATP-PFK isoenzymes in a bacterium. The novel ATP-PFK enzyme was purified to homogeneity and characterized in detail at the biochemical and molecular levels. The A. methanolica ATP-PFK and PP(i)-PFK proteins possess a low level of amino acid sequence similarity (24%), clearly showing that the two proteins are not the result of a gene duplication event. PP(i)-PFK is closely related to other (putative) actinomycete PFK enzymes. Surprisingly, the A. methanolica ATP-PFK is most similar to ATP-PFK from the protozoon Trypanosoma brucei and PP(i)-PFK proteins from the bacteria Borrelia burgdorferi and Treponema pallidum, both spirochetes, very distinct from actinomycetes. The data thus suggest that A. methanolica obtained the ATP-PFK-encoding gene via a lateral gene transfer event.  相似文献   

8.
A generally applicable, inexpensive, and sensitive method for the determination of inorganic pyrophosphate (PPi) was developed. PPi was quantitatively separable from solution even in nanomolar concentrations by filtration through a membrane filter in the presence of CaCl2 and KF. The separated PPi was dissolved by immersing the filter in 0.5 n H2SO4. Inorganic phosphate (Pi) was removed by precipitating it as a phosphomolybdate-triethylamine complex and the PPi was measured as a green pyrophosphomolybdate in the presence of 2-mercaptoethanol. Nucleotides and phosphate esters do not react. PPi can be accurately assayed even when there is a 104-fold excess of Pi. Trimetaphosphate, tripolyphosphate, and tetrapolyphosphate also give this green color, but the rate of the color formation is 50 times slower than that with PPi. Thus this interference of the polyphosphates can be eliminated or the polyphosphates can be assayed simultaneously with the PPi in the same sample.  相似文献   

9.
A new method for the rapid analysis of inorganic pyrophosphate (PPi) which utilizes the enzyme ATP sulfurylase is described. All components of the assay system are commercially available and inexpensive. The assay is linear over the range of 0.5–50.0 nmol of PPi and is not affected by inorganic phosphate. ATP and PPi can both be analyzed using this method.  相似文献   

10.
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.  相似文献   

11.
The growth of an anaerobic, spore-forming rod we have isolated from the cockroach gut after enrichment on media containing PPi was stimulated by the presence of PPi. The doubling time decreased and cell yield increased proportionately to PPi concentrations of up to 0.35%. A similar stimulation of the growth of Desulfotomaculum sp. by PPi has been reported. The PPi-stimulated Clostridium sp. fermented a number of sugars with the production of hydrogen, acetate, and butyrate, with smaller amounts of ethanol and butanol being produced from some substrates. The fermentation products were not qualitatively changed by the presence of PPi, but significantly more hydrogen was produced. The organism contained several of the enzymes previously reported from Entamoeba sp. and Propionibacterium sp., in which PPi serves as a source of a high-energy bond in place of ATP. These include significant amounts of pyruvate-phosphate dikinase and phosphoenolpyruvate carboxytransphosphorylase. The activities of many of the catabolic enzymes of the organism, as well as of its phosphatases and pyrophosphatase, were similar whether it was grown in the presence or absence of PPi. The organism did not accumulate intracellular polyphosphate granules but stored large amounts of glycogen.  相似文献   

12.
《BBA》1986,851(2):276-282
Photosynthetic formation of inorganic pyrophosphate (PPi) in Rhodospirillum rubrum chromatophores has been studied utilizing a new and sensitive method for continuous monitoring of PPi synthesis. Studies of the reaction kinetics under a variety of conditions, e.g., at different substrate concentrations and different electron-transport rates, have been performed. At very low light intensities the rate of PPi synthesis is twice the rate of ATP synthesis. Antimycin A, at a concentration which strongly inhibited the photosynthetic ATP formation, inhibited the PPi synthesis much less. Even at low rates of electron transport a significant rate of PPi synthesis is obtained. The rate of photosynthetic ATP formation is stimulated up to 20% when PPi synthesis is inhibited. It is shown that PPi synthesis and ATP synthesis compete with each other. No inhibition of pyrophosphatase activity is observed at high carbonyl cyanide p-trifluoromethoxyhydrazone concentration while ATPase activity is strongly inhibited under the same conditions.  相似文献   

13.
An enzyme from Entamoeba histolytica catalyzes the formation of acetyl phosphate and orthophosphate from acetate and inorganic pyrophosphate (PPi), but it displays much greater activity in the direction of acetate formation. It has been purified 40-fold and separated from interfering enzyme activities by chromatography. Its reaction products have been quantitatively established. ATP cannot replace PPi as phosphoryl donor in the direction of acetyl phosphate formation nor will any common nucleoside diphosphate replace orthophosphate as phosphoryl acceptor in the direction of acetate formation. The trivial name proposed for the new enzyme is acetate kinase (PPi).  相似文献   

14.
Gerri Levine  J.A. Bassham 《BBA》1974,333(1):136-140
Inhibition of photosynthesis in isolated spinach chloroplasts by Pi is decreased by the presence of PPi and increased with increasing Mg2+ concentration. Previously reported regulation of this photosynthesis by protein factors from spinach leaves appears to be due mostly to pyrophosphate phosphohydrolase (EC 3.6.1.1) activity which converts PPi to Pi and to the effects of PPi and Mg2+ on this pyrophosphatase activity.  相似文献   

15.
A microprocedure for the colorimetric determination of inorganic pyrophosphate (PPi) in the presence or absence of orthophosphate (Pi) has been developed. PPi is estimated quantitatively as the amount of chromophore formed with molybdate reagent, 1-amino-2-naphthol-4-sulfonic acid in bisulfite and thiol reagent (monothioglycerol or 2-mercaptoethanol). The latter is obligatory for color formation. Pi is estimated without thiol reagent. The two chromophores differ in absorption spectra, the greatest difference being at 580 nm. For both, color develops fully by 10 min and is stable up to 1 hr. Just less than 0.4 μm PPi can be detemined. The extinction coefficients are 2.70 × 104 and 8.76 × 103 for PPi and Pi, respectively, both with thiol reagent present, and 2.77 × 103 for Pi with no thiol reagent.A ten-fold excess of Pi does not interfere with the determination of PPi and in fact can be estimated in the same mixture. A 15-fold excess, however, diminishes the accuracy of PPi estimations. Trichloroacetic acid and sodium fluoride inhibi color formation, but this inhibition is overcome by the addition of sodium acetate buffer, pH 4.0. Nucleoside triphosphates and adenosine 3′:5′-cyclic monophosphate are stable in the reaction mixture.The method was tested in assays of Escherichia coli DNA-dependent RNA polymerase (nucleoside triphosphate: RNA nucleotidyltransferase, EC 2.7.7.6). Progress curves measured by either the rate of PPi formation or the rate of synthesis of labeled RNA were very similar. Product PPi formed by as little as 0.6 unit of RNA polymerase in a 225-μl incubation medium could be measured.An automated version of the method was devised which allows accurate determination of PPi down to 1 μm (without range expander attachment) at a sampling rate of 20–40 tubes/hr.  相似文献   

16.
Acetate kinase (ACK) catalyzes the reversible synthesis of acetyl phosphate by transfer of the γ-phosphate of ATP to acetate. Here we report the first biochemical and kinetic characterization of a eukaryotic ACK, that from the protist Entamoeba histolytica. Our characterization revealed that this protist ACK is the only known member of the ASKHA structural superfamily, which includes acetate kinase, hexokinase, and other sugar kinases, to utilize inorganic pyrophosphate (PPi)/inorganic phosphate (Pi) as the sole phosphoryl donor/acceptor. Detection of ACK activity in E. histolytica cell extracts in the direction of acetate/PPi formation but not in the direction of acetyl phosphate/Pi formation suggests that the physiological direction of the reaction is toward acetate/PPi production. Kinetic parameters determined for each direction of the reaction are consistent with this observation. The E. histolytica PPi-forming ACK follows a sequential mechanism, supporting a direct in-line phosphoryl transfer mechanism as previously reported for the well-characterized Methanosarcina thermophila ATP-dependent ACK. Characterizations of enzyme variants altered in the putative acetate/acetyl phosphate binding pocket suggested that acetyl phosphate binding is not mediated solely through a hydrophobic interaction but also through the phosphoryl group, as for the M. thermophila ACK. However, there are key differences in the roles of certain active site residues between the two enzymes. The absence of known ACK partner enzymes raises the possibility that ACK is part of a novel pathway in Entamoeba.  相似文献   

17.
To estimate the proficiency of inorganic pyrophosphatase as a catalyst, 31P NMR was used to determine rate constants and thermodynamics of activation for the spontaneous hydrolysis of inorganic pyrophosphate (PPi) in the presence and absence of Mg2+ at elevated temperatures. These values were compared with rate constants and activation parameters determined for the reaction catalyzed by Escherichia coli inorganic pyrophosphatase using isothermal titration calorimetry. At 25 °C and pH 8.5, the hydrolysis of MgPPi2− proceeds with a rate constant of 2.8 × 10−10 s−1, whereas E. coli pyrophosphatase was found to have a turnover number of 570 s−1 under the same conditions. The resulting rate enhancement (2 × 1012-fold) is achieved entirely by reducing the enthalpy of activation (ΔΔH = −16.6 kcal/mol). The presence of Mg2+ ions or the transfer of the substrate from bulk water to dimethyl sulfoxide was found to increase the rate of pyrophosphate hydrolysis by as much as ∼106-fold. Transfer to dimethyl sulfoxide accelerated PPi hydrolysis by reducing the enthalpy of activation. Mg2+ increased the rate of PPi hydrolysis by both increasing the entropy of activation and reducing the enthalpy of activation.  相似文献   

18.
Acidocalcisomes     
Docampo R  Moreno SN 《Cell calcium》2011,50(2):113-119
Acidocalcisomes are acidic organelles containing calcium and a high concentration of phosphorus in the form of pyrophosphate (PPi) and polyphosphate (poly P). Organelles with these characteristics have been found from bacteria to human cells implying an early appearance and persistence over evolutionary time or their appearance by convergent evolution. Acidification of the organelles is driven by the presence of vacuolar proton pumps, one of which, the vacuolar proton pyrophosphatase, is absent in animals, where it is substituted by a vacuolar proton ATPase. A number of other pumps, antiporters, and channels have been described in acidocalcisomes of different species and are responsible for their internal content. Enzymes involved in the synthesis and degradation of PPi and poly P are present within the organelle. Acidocalcisomes function as storage sites for cations and phosphorus, and participate in PPi and poly P metabolism, calcium homeostasis, maintenance of intracellular pH, and osmoregulation. Experiments in which the acidocalcisome Ca2+-ATPase of different parasites were downregulated or eliminated, or acidocalcisome Ca2+ was depleted revealed the importance of this store in Ca2+ signaling needed for host invasion and virulence. Acidocalcisomes interact with other organelles in a number of organisms suggesting their association with the endosomal/lysosomal pathway, and are considered part of the lysosome-related group of organelles.  相似文献   

19.
Diel vertical migration by Heterosigma akashiwo (Hada) Hada (Raphidophyceae) was monitored in a 1.5 in tall microcosm. Vertical stratification, with low salinity and low orthophosphate (Pi) concentration in the upper layer and high salinity and high Pi concentration in the lower layer, was simulated in the tank, analogous to summer stratification in the Seto Inland Sea. The phosphate metabolism of H. akashiwo during this vertical migration was studied using 31P-NMR spectroscopy. At night this species migrated to the lower phosphate-rich layer and took up inorganic phosphate (Pi) which then was accumulated as polyphosphate (PPi) by an increase in the chain length of PPi During the daytime this species migrated to the phosphate-depleted surface water and utilized the accumulated PPi for photophosphorylation by decreasing the chain length of PPi During the first night after the phosphorus was introduced to the previously impoverished waters, the cells took up inorganic phosphate, accumulating the new phosphorus nutrient internally as Pi But the cells did not convert Pi to PPi presumably due to their lack of ATP. After the second day of the experiment, conversion of Pi to PPi at night was much more rapid than on the first day, presumably due to increased ATP availability. Then the cycle continued, with uptake of Pi and conversion to PPi at night at the bottom and its utilization during the day at the surface. These data suggest that the role of PPi in the metabolism of this species appears to be as a phosphate pool which regulates the level of Pi and ATP in the cell. Diel vertical migration allows this red tide species to shuttle between the phosphate-rich lower layer and the photic upper layer in stratified waters. 31P-NMR is shown to be a valuable tool in studying the phosphorus metabolism in migrating organisms.  相似文献   

20.
Adenylation domains are critical enzymes that dictate the identity of the amino acid building blocks to be incorporated during nonribosomal peptide (NRP) biosynthesis. NRPs display a wide range of biological activities and are some of the most important drugs currently used in clinics. Traditionally, activity of adenylation domains has been measured by radioactive ATP-[32P]pyrophosphate (PPi) exchange assays. To identify adenylation domains for future combinatorial production of novel NRPs as potential drugs, we report a convenient high-throughput nonradioactive method to measure activity of these enzymes. In our assay, malachite green is used to measure orthophosphate (Pi) concentrations after degradation by inorganic pyrophosphatase of the PPi released during aminoacyl-AMP formation by action of the adenylation domains. The assay is quantitative, accurate, and robust, and it can be performed in 96- and 384-well plate formats. The performance of our assay was tested by using NcpB-A4, one of the seven adenylation domains involved in nostocyclopeptide biosynthesis. The kinetics of pyrophosphate release monitored by this method are much slower than those measured by a traditional ATP-[32P]PPi exchange assay. This observation indicates that the formation of the adenylated amino acid and its release are the rate-limiting steps during the catalytic turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号