共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+-stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration. 相似文献
2.
The effect of proteases on the (Na+ + K+)-activated adenosine triphosphatase system of rat brain 总被引:2,自引:0,他引:2
J Somogyi 《Biochimica et biophysica acta》1968,151(2):421-428
3.
4.
5.
6.
K+-independent active transport of Na+ by the (Na+ and K+)-stimulated adenosine triphosphatase 总被引:1,自引:0,他引:1
The (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from canine kidney reconstituted into phospholipid vesicles showed an ATP-dependent, ouabain-inhibited uptake of 22Na+ in the absence of added K+. This transport occurred against a Na+ concentration gradient, was not affected by increasing the K+ concentration to 10 microM (four times the endogenous level), and could not be explained in terms of Na+in in equilibrium Na+out exchange. K+-independent transport occurred with a stoichiometry of 0.5 mol of Na+ per mol of ATP hydrolyzed as compared with 2.9 mol of Na+ per mol of ATP for K+-dependent transport. 相似文献
7.
Ozone-treated aqueous suspensions of natural phospholipids yield at least two types of inhibitors of human erythrocyte membrane (Na+ + K+)-ATPase. The more labile ones appear to be carbonyl-containing substances whose inhibitory properties are enhanced if ozonolysis takes place in the presence of putrescine or glycine. Other amines of similar structure are much less effective as potentiators. Semicarbazide destroys the inhibitory properties of the more labile substances and can release putrescine from the complexes it forms with the carbonyl products of ozonolysis. 3the more stable inhibitors are unaffected by putrescine, glycine, or semicarbazide. Synthetic, saturated phospholipids do not produce these inhibitors during ozonolysis. 相似文献
8.
9.
10.
11.
A procedure is described for preparation of highly active (Na+,K+)-ATPase from rat heart which has a specific activity of 200-600 mumol Pi/mg/h. The procedure is simple and can be applied to small amounts of heart muscle (approximately 1 g). The ATPase activity was more than 90% sensitive to ouabain (at concentrations up to 1 mM). The ouabain sensitivity is biphasic with about 20% of the ATPase activity being inhibited at approximately 3 X 10(-7) M ouabain. 相似文献
12.
G J Giotta 《The Journal of biological chemistry》1976,251(5):1247-1252
(Na+ + K+)-dependent adenosine triphosphatase (NaK-ATPase) consists of two polypeptide chains, a large polypeptide with a molecular weight of about 100,000, and a sialoglycoprotein with a molecular weight of about 40,000. Cross-linking of purified NaK-ATPase with the (o-phenanthroline)2-cupric ion complex (CP) results in the reversible formation of dimers, trimers, tetramers, and pentamers of the large polypeptide and loss of NaK-ATPase activity. ATPase activity is partially recovered if NaK-ATPase is incubated with beta-mercaptoethanol after treatment with CP. In contrast to these results, if NaK-ATPase is cross-linked in crude canine kidney microsomes, only a dimer of the large polypeptide is formed. No cross-linking of the sialoglycoprotein to the large polypeptide is detected when NaK-ATPase is cross-linked in purified form. However, when NaK-ATPase is reacted with CP in either purified or microsomal form, the sialoglycoprotein cross-links to itself yielding a high molecular weight aggregate. The results show that the functional subunit structure of NaK-ATPase consists of at least two large polypeptides. 相似文献
13.
14.
F.M.A.H. Schuurmans Stekhoven H.G.P. Swarts J.J.H.H.M. De Pont S.L. Bonting 《生物化学与生物物理学报:生物膜》1983,736(1):73-78
(1) Contrary to what has usually been assumed, (Na+ + K+)-ATPase slowly hydrolyses AdoPP[NH]P in the presence of Na+ + Mg2+ to ADP-NH2 and Pi. The activity is ouabain-sensitive and is not detected in the absence of either Mg2+ or Na2+. The specific activity of the Na+ + Mg2+ dependent AdoPP[NH]P hydrolysis at 37°C and pH 7.0 is 4% of that for ATP under identical conditions and only 0.07% of that for ATP in the presence of K+. The activity is not stimulated by K+, nor can K+ replace Na+ in its stimulatory action. This suggests that phosphorylation is rate-limiting. Stimulation by Na+ is positively cooperative with a Hill coefficient of 2.4; half-maximal stimulation occurs at 5–9 mM. The Km value for AdoPP[NH]P is 17 μM. At 0°C and 21°C the specific activity is 2 and 14%, respectively, of that at 37°C. AMP, ADP and AdoPP[CH2]P are not detectably hydrolysed by (Na+ + K+)-ATPase in the presence of Na+ + Mg2+. (2) In addition, AdoPP[NH]P undergoes spontaneous, non-enzymatic hydrolysis at pH 7.0 with rate constants at 0, 21 and 37°C of 0.0006, 0.006 and 0.07 h?1, respectively. This effect is small compared to the effect of enzymatic hydrolysis under comparable conditions. Mg2+ present in excess of AdoPP[NH]P reduces the rate constant of the spontaneous hydrolysis to 0.005 h?1 at 37°C, indicating that the MgAdoPP[NH]P complex is virtually stable to spontaneous hydrolysis, as is also the case for its enzymatic hydrolysis. (3) A practical consequence of these findings is that AdoPP[NH]P binding studies in the presence of Na+ + Mg2+ with enzyme concentrations in the mg/ml range are not possible at temperatures above 0°C. On the other hand, determination of affinity in the (Na+ + K+)-ATPase reaction by competition with ATP at low protein concentrations (μg/ml range) remains possible without significant hydrolysis of AdoPP[NH]P even at 37°C. 相似文献
15.
E Pfeiler 《Biochimica et biophysica acta》1978,524(2):447-454
The effect of the adenosine triphosphate analog, 6,6'-dithiobis(inosinyl imidodiphosphate), (sIMP-PNP)2, was tested on the ouabain-sensitive (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) and the ouabain-insensitive Mg2+ - ATPase in microsomes prepared from gill tissue of sea water-adapted rainbow trout, Salmo gairdneri. The (Na+ + K+)-ATPase was completely inhibited by low concentrations of (sIMP-PNP)2 (6 micrometer) but the Mg2+ - ATPase was unaffected by the inhibitor at concentrations as high as 28 micrometer, supporting the suggestion that the two activities represent separate enzymes. The specificity of inactivation could be demonstrated both at a physiological temperature (13 degrees C) and at 37 degrees C. The rates of inactivation were similar at both temperatures. Inactivation of the (Na+ + K+)-ATPase by (sIMP-PNP)2 was reversed by dithiothreitol, suggesting that the inhibitor forms a mixed disulfide with sulfhydryl groups on the enzyme. The inability of substrate (either ATP or its analog, adenyl-5'-yl imidodiphosphate) to protect against inactivation suggests that (sIMP-PNP)2 is reacting with sulfhydryl groups which are not associated with the active site. 相似文献
16.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity 总被引:1,自引:0,他引:1
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO. 相似文献
17.
(Na+ + K+)-activated ATPase in beef brain microsomes is inactivated by the disulfide of thionosine tri[gamma-32P]phosphate, an ATP analog. The inactivation of the enzyme, which is accompanied by an incorporation of radioactivity into the membrane protein, is abolished by ATP or dithiothreitol. Since dithiothreitol restores the activity of (Na+ + K+)-ATPase, which had previously been inactivated by this ATP analog, it is concluded that thionosine triphosphate disulfide reacts with a sulfhydryl group in the ATP binding site of (Na+ + K+)-activated ATPase. 相似文献
18.
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1. 相似文献
19.
Effects of Na+, K+, and nucleotides on Mg2+-dependent phosphorylation of (Na+ + K+)-dependent adenosine triphosphatase by Pi were studied under equilibrium conditions. Na+ was a linear competitive inhibitor with respect to Mg2+ and a mixed inhibitor with respect to Pi. K+ was a partial inhibitor; it interacted with positive cooperativity and induced negative cooperativities in the interactions of Mg2+ and Pi with the enzyme. Adenyl-5'-yl (beta, gamma-methylene)diphosphonate, a nonhydrolyzable analog of ATP, interacted with negative cooperativity to inhibit phosphorylation in competition with Pi. ATP was also a competitive inhibitor. Na+ and K+ acted antagonistically, Na+ and nucleotides inhibited synergistically, and K+ and nucleotides were mutually exclusive. In the presence of ouabain, when nucleotides were excluded from the site inhibiting phosphorylation, a low affinity regulatory site for nucleotides became apparent, the occupation of which reduced the rate of dephosphorylation and the initial rate of phosphorylation of the enzyme without affecting the equilibrium constant of the reaction of Pi with the ouabain-complexed enzyme. The regulatory site was also detected in the absence of ouabain. The data suggest that catalytic and transport functions of the oligomeric enzyme may be regulated by homotropic and heterotropic site-site interactions, ligand-induced slow isomerizations, and distinct catalytic and regulatory sites for ATP. 相似文献