首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparative study has been carried out with FDP aldolases fromEscherichia coli 518 andLactobacillus casei ATCC 7469, which had been purified 17.6- and 65-fold, respectively. The aldolase ofL.casei was stable only in the presence of mercaptoethanol, whereas that ofE.coli was strongly inhibited at low (1.0×10–4 m) and activated at high concentrations (2.0×10–1 m) of the same compound.p-Chloromercuric benzoic acid inhibited both aldolases, with 40% inhibition at 2×10–5 m withE.coli aldolase against at 2×10–4 m withL.casei aldolase. Significant differences were also observed in pH optima and Km values.E.coli aldolase exhibited a maximal activity at pH 9.0 and gave a Km value of 1.76×10–3 m FDP with strong substrate inhibition above 7×10–3 m, against pH 6.8–7.0 and a Km of 7.04×10–3 m FDP forL.casei aldolase. Strong resistance ofL.casei aldolase against inhibition by EDTA, Ca2+ and Mn2+ was observed compared with complete inhibition at concentrations of 20mm, 40mm and 20mm, respectively, withE. coli aldolase. Polyacrylamide gel electrophoresis did not reveal any differences between the two enzyme preparations.The differences of the properties of FDP aldolases from different bacterial genera are discussed in relation to other Class II aldolases.  相似文献   

2.
Summary In earlier studies, aldosterone increased the incorporation of precursors into a class of cytoplasmic RNA with the characteristics of messenger RNA (mRNA), in toad bladder epithelium. In the present studies, this effect was analyzed further with a competitive antagonist, spironolactone (SC-9420). Paired hemibladders were labeled with3H-uridine (30 min pulse–140 min chase), with or without aldosterone (3.5×10–8 m, 7×10–8 m) in the presence or absence of SC-9420 (7×10–6 m, 2.5×10–5 m) at molar ratios of 2001 to 2801. Cytoplasmic RNA, either the total phenol-SDS extract or polyadenylated-RNA (poly(A)(+)-RNA) obtained by oligo-deoxythymidylate-cellulose (oligo(dT)-cellulose) chromatography was analyzed in linear 5–20% sucrose gradients. Eight sets of experiments were completed in which the short-circuit current (scc) was monitored for 180 min and the incorporation of3H-uridine (30 min pulse–150 min chase) was simultaneously determined on pools of epithelia from 5 to 10 hemibladders. The fractional change inscc correlated linearly with the fractional change in3H-uridine of 12S cytoplasmic RNA (r=0.95,p<0.001). The poly(A)(+)-RNA fraction had no detectable rRNA or tRNA and gave a heterogeneous pattern, typical of mRNA, in the sucrose gradients. In the presence of exogenous aldosterone, SC-9420 inhibited the incorporation of3H-uridine into poly(A)(+)-RNA (particularly 12S). These results support the inference that induction of mRNA mediates the action of aldosterone on Na+ transport.  相似文献   

3.
Somatic embryo cultures of Picea mariana and the species complex P. glauca-engelmannii were each grown in 7.5-l-capacity mechanically-stirred bioreactors containing 61 medium (LP, von Arnold and Eriksson) with 30 mm sucrose. Growth of both species occurred with no observable signs of shear stress due to mechanical agitation. Growth kinetics were analysed using an array of parameters (settled culture volume, packed culture volume, osmolarity, conductivity, pH). These were compared with fresh weight, dry weight, and somatic embryo number in order to determine what parameters were highly correlated with growth and embryo number. Increasing the sucrose concentration from 30 mm to 60 mm resulted in an increase in biomass and total number of somatic embryos. For P. mariana a maximum dry weight of 6.3 gl–1 and 3076 embryos ml–1 occurred in LP medium with 60 mm sucrose after 10–12 days of culture. For P. glauca-engelmannii a maximum dry weight of 4.3 gl–1 and 2278 embryos ml–1 occurred in LP medium with 60 mm sucrose after 6–8 days culture. For all sucrose concentrations, fresh weight, dry weight and embryo number were closely correlated with packed culture volume and conductivity for P. mariana, and settled culture volume, packed culture volume and conductivity for P. glauca-engelmannii.Correspondence to: D. I. Dunstan  相似文献   

4.
Direct association between wheat roots and an ammonia-excreting mutant of the cyanobacterium Anabaena variabilis, strain SA-1, was required for maximal enhancement of growth of wheat plants in nitrogen (N)-free, hydroponic medium. Over 85% of the cyanobacterial mutant SA-1 inoculated to the roots were adsorbed under non-saturating conditions. The adsorption process of SA-1 to wheat roots was biphasic: an initial rapid adsorption was followed by a slow phase with about 10% of the initial adsorption rate. The maximal adsorption rate of filaments observed was 1.6 mg dry wt. SA-1 adsorbed·plant–1·h–1. Bypassing CO2 fixation and sugar formation, the 14C label from [14C]sucrose was directly applied to leaf blades to study sugar translocation. The 14C label from this treatment appeared in the wheat culture medium within an hour. Nitrate-grown plants excreted about 30% of the 14C label into the medium, compared to only 10% excreted by wheat/Anabaena co-cultures. SA-1 assimilated 27% of all 14C translocated from [U-14C]sucrose applied to wheat leaves, and 14C label from this treatment was recovered from strain SA-1 after 30 min. Roots and cyanobacteria accounted for 51% of all radioactive label recovered in the plants co-cultured with SA-1 vs 20% for nitrate-grown plants. We studied the activity of -fructosidase (invertase) in wheat of variety Yecora rojo. Roots from nitrate-grown wheat plants produced high levels of invertase activity, which converted over 85% of 3 mm sucrose into glucose and fructose in 24 h. The rate of sucrose disappearance in the medium of co-cultures using A. variabilis SA-1, was 70% of that of nitrate-grown plants, but the levels of glucose and fructose in these cultures were always very low during sucrose conversion, suggesting hexose assimilation. To study the role of diffusible metabolites, a dialysis membrane was employed to separate the ammonia-excreting SA-1 from the wheat roots. Containing SA-1 in a dialysis bag away from direct root contact, severely limited leaf growth to less than one-third of the growth rate of nitrate control cultures. Ammonia produced by mutant SA-1 in dialysis bag cultures was excreted into the medium at 0.4 mm vs 1.2 mm in free-living cultures, but ammonia was not detectable in co-cultures with or without the dialysis bag containing the mutant. The nitrogenase activity derepressed in the mutant and responsible for ammonia excretion was always higher in the association co-cultures than in either free cells or in dialysis-bag cultures. The nitrogenase activity of strain SA-1 was highest (200 mol ethylene formed·mg–1 Chl·h–1) when the cyanobacterium was associated with the root tips. Dialysis membrane separation of plant and cyanobacterium severely inhibited growth of wheat during a complete growth cycle of 2 months. Total biomass and grain yield were very similar for control cultures without inorganic N or SA-1, and for diffusion cultures containing SA-1, kept in a dialysis bag around the roots. Total biomass of the association co-culture attained 75% of the biomass of the nitrate-grown control. It is proposed that wheat roots supplied fructose derived from sucrose for growth and nitrogen fixation of SA-1 in the light, and that ammonia excreted by SA-1 was utilized by the wheat plant for its own growth. Correspondence to: H. Spiller  相似文献   

5.
Volume-sensitive chloride and potassium currents were studied, using the whole-cell clamp technique, in cultured wild-type mouse proximal convoluted tubule (PCT) epithelial cells and compared with those measured in PCT cells from null mutant kcne1 –/– mice. In wild-type PCT cells in primary culture, a Cl conductance activated by cell swelling was identified. The initial current exhibited an outwardly rectifying current-voltage (I-V) relationship, whereas steady-state current showed decay at depolarized membrane potentials. The ion selectivity was I > Br > Cl >> gluconate. This conductance was sensitive to 1 mM 4,4-Diisothiocyanostilbene-2,2-disulfonic acid (DIDS), 0.1 mM 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and 1 mM diphenylamine-2-carboxylate (DPC). Osmotic stress also activated K+ currents. These currents are time-independent, activated at depolarized potentials, and inhibited by 0.5 mM quinidine, 5 mM barium, and 10 µM clofilium but are insensitive to 1 mM tetraethylammonium (TEA), 10 nM charybdotoxin (CTX), and 10 µM 293B. In contrast, the null mutation of kcne1 completely impaired volume-sensitive chloride and potassium currents in PCT. The transitory transfection of kcne1 restores both Cl and K+ swelling-activated currents, confirming the implication of KCNE1 protein in the cell-volume regulation in PCT cells in primary cultures.  相似文献   

6.
Summary The fluorescent fatty acids,trans-parimaric andcis-parinaric acid, were used as analogs of saturated and unsaturated fatty acids in order to evaluate binding of fatty acids to liver plasma membranes isolated from normal fed rats. Insulin (10–8 to 10–6 m) decreasedtrans-parinaric acid binding 7 to 26% whilecis-parinaric acid binding was unaffected. Glucagon (10–6 m) increasedtrans-parinaric acid binding 44%. The fluorescence polarization oftrans-parinarate,cis-parinarate and 1,6-diphenyl-1,3,5-hexatriene was used to investigate effects of triiodothyronine, insulin and glucagon on the structure of liver plasma membranes from normal fed rats or from rats treated with triiodothyronine or propylthiouracil. The fluorescence polarization oftrans-parinarate,cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene was 0.300±0.004, 0.251±0.003, and 0.302±0.003, respectively, in liver plasma membranes from control rats and 0.316±0.003, 0.276±0.003 and 0.316±0.003, respectively, in liver plasma membranes from hyperthyroid rats (p<0.025,n=5). Propylthiouracil treatment did not significantly alter the fluorescence polarization of these probe molecules in the liver plasma membranes. Thus, liver plasma membranes from hyperthyroid animals appear to be more rigid than those of control animals. The effects of triiodothyronine, insulin and glucagon addedin vitro to isolated liver plasma membrane preparations were also evaluated as follows: insulin (10–10 m) and triiodothyronine (10–10 m) increased fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene in liver plasma membranes while glucagon (10–10 m) had no effects. These hormonal effects on probe fluorescence polarization in liver plasma membranes were abolished by pretreatment of the rats for 7 days with triiodothyronine. Administration of triiodothyronine (10–10 m)in vitro increased the fluorescence polarization of trans-parinaric acid in liver plasma membranes from propylthiouracil-treated rats. Thus, hyperthyroidism appeared to abolish thein vitro increase in polarization of probe molecules in the liver plasma membranes. Temperature dependencies in Arrhenius plots of absorption-corrected fluorescence and fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene were noted near 25°C in liver plasma membranes from triiodothyronine-treated rats and near 18°C in liver plasma membranes from propylthiouracil-treated rats. In summary, hormones such as triiodothyronine, insulin and glucagon may at least in part exert their biological effects on metabolism by altering the structure of the liver plasma membranes.  相似文献   

7.
WhenBacillus subtilis strain ATCC 21951, a transketolase-deficientd-ribose-producing mutant, was grown ond-glucose plus a second substrate which is metabolized via the oxidative pentose phosphate cycle (d-gluconic acid,d-xylose,l-arabinose ord-xylitol),d-glucose did not catabolite repress metabolism of the second carbon source. Thed-ribose yield obtained with the simultaneously converted carbon substrates, significantly exceeded that when onlyd-glucose was used. In addition, the concentration of glycolytic by-products and the fermentation time significantly decreased. Based on these findings, a fermentation process was developed withB. subtilis strain ATCC 21951 in whichd-glucose (100 g L–1) andd-gluconic acid (50 g L–1) were converted into 45 g L–1 ofd-ribose and 7.5 g L–1 of acetoin. A second process, based ond-glucose andd-xylose (100 g L–1 each), yielded 60 g L–1 ofd-ribose and 4 g L–1 of acetoin plus 2,3-butanediol. Both mixed carbon source fermentations provide excellent alternatives to the less efficientd-glucose-based processes used so far.  相似文献   

8.
Summary This paper reports the inhibitory effects of calmidazolium (CDZ), a calmodulin inhibitor, on electrical uncoupling by CO2. Membrane potential and coupling ratio (V 2/V1) are measured in two neighboring cells ofXenopus embryos (16 to 64 cell stage) for periods as long as 5.5 hr. Upon exposure to 100% CO2, control cells consistently uncouple even if the CO2 treatments are repeated every 15 min for 2.5 hr. CDZ (5×10–8–1×10–7 m) strongly inhibits uncoupling. The inhibition starts after 30, 50 and 60 min of treatment with 1×10–7, 7×10–8 and 5×10–8 m CDZ, respectively, is concentration-dependent and partially reversible. In the absence of CO2, CDZ also improves electrical coupling. CDZ has no significant effect on membrane potential and nonjunctional membrane resistance. These data suggest that calmodulin or a calmodulin-like protein participates in the uncoupling mechanism.  相似文献   

9.
Summary Usin gintracellular microelectrode technique, the response of the voltageV across the plasma membrane of cultured bovine corneal endothelial cells to changes in sodium and bicarbonate concentrations was investigated. (1) The electrical response to changes in [HCO 3 ] o (depolarization upon lowering and hyperpolarization upon raising [HCO 3 ] o ) was dependent on sodium. Lithium could fairly well be substituted for sodium, whereas potassium or choline were much less effective. (2) Removal of external sodium caused a depolarization, while a readdition led to a hyperpolarization, which increased with time of preincubation in the sodium-depleted medium. (3) The response to changes in [Na+] o was dependent on bicarbonate. In a nominally bicarbonate-free medium, its amplitude was decreased or even reversed in sign. (4) Application of SITS or DIDS (10–3 m) had a similar effect on the response to sodium as bicarbonate-depleted medium. (5) At [Na+] o =151mm and [HCO 3 ] o =46mm, the transients ofV depended, with 39.0±9.0 (sd) mV/decade, on bicarbonate and, with 15.3±5.8 (sd) mV/decade, on sodium. (6) After the preincubation of cells with lithium, replacement of Li by choline led to similar effects as the replacement of sodium by choline, though the response ofV was smaller with Li. This response could be reduced or reversed by the removal of bicarbonate or by the application of SITS. (7) Amiloride (10–3 m) caused a reversible hyperpolarization of the steady-state potential by 8.5±2.6 mV (sd). It did not affect the immediate response to changes in [Na+] o or [HCO 3 ] o , but reduced the speed of regaining the steady-state potential after a change in [HCO 3 ] o . (8) Ouabain (10–4 m) caused a fast depolarization of –6.8±1.1 (sd) mV, which was followed by a continuing slower depolarization. The effect was almost identical at 10–5 m. (9) It is suggested, that corneal endothelial cells possess a cotransport for sodium and bicarbonate, which transports net negative charage with these ions. It is inhibitable by stilbenes, but not directly affected by amiloride or ouabain. Lithium is a good substitute for sodium with respect to bicarbonate transport and is transported itself. In addition, the effect of amiloride provides indirect evidence for the existence of a Na+/H+-antiport. A model for the transepithelial transport of bicarbonate across the corneal endothelium is proposed.  相似文献   

10.
Summary Internal perfusion ofHelix neurons with a solution containing potassium aspartate, MgCl2, ATP, and HEPES causes the calcium-activated potassium current (I K(Ca)) evoked by depolarizing voltage steps to decrease with time. When internal free Ca++ is strongly buffered to 10–7 m by including 0.5mm EGTA and 0.225mm CaCl2 in the internal solution,I K(Ca) remains constant for up to 3 hours of perfusion. In cells whereI K(Ca) is small at the start of perfusion, perfusion with the strongly buffered 10–7 m free Ca++ solution produces increases inI K(Ca) which ultimately saturate. In cells perfused with solutions buffered to 10–6 m free Ca++,I K(Ca) is low and does not change with perfusion. These results lead us to conclude thatI K(Ca) is stable in perfusedHelix neurons and that the apparent loss ofI K(Ca) seen initially with perfusion is due to accumulation of cytoplasmic calcium. Since the calcium current (I Ca) provides the Ca++ which activatesI K(Ca) during a depolarizing pulse,I Ca is also stable in perfused cells when free intracellular Ca++ is buffered.Perfusion with 1 m calmodulin (CaM) produces no effect onI K(Ca) with either 10–7 or 10–6 m free internal calcium. Inhibiting endogenous CaM by including 50 m trifluoperazine (TFP) in both the bath and the internal perfusion solution also produces no effect onI K(Ca) with 10–7 m free internal calciu. It is concluded that CaM plays no role inI K(Ca) activation.  相似文献   

11.
Summary The diffusivities ofl-malic acid and glucose in an agar membrane entrapping small amounts ofEscherichia coli orRhodospirillum rubrum whole cells were measured using time lag (TL) and steady state (SS) methods. Diffusivities were overestimated by the SS method. For concentrations of immobilizedR. rubrum cells ranging between 104 and 109 organisms cm–3 agar (20 ng-2 mg dry weight cm–3 agar), the diffusion coefficient ofl-malic acid, determined by both methods, was related to the logarithm of the membrane cell content by a decreasing linear relationship. The diffusion coefficient of glucose obtained by TL analysis was not significantly affected by the presence in the membrane of 3 ng-0.3 mg dry wt.E. coli cm–3 agar. However, values arising from the SS method decreased linearly as a function of the amount of immobilized organisms. Membranes containingR. rubrum cells offered higher diffusional resistance tol-malic acid and glucose than those loaded with the same amount ofE. coli cells.  相似文献   

12.
The fluence-rate and time dependence for photoaccumulation and photodispersal ofEuglena gracilis was measured for the wild-type strain and three white mutants. For wavelengths of 453 or 463 nm the threshold for photoaccumulation was close to 6×10−2Wm−2. Photoaccumulation increased steadily with time and reached a maximum after about 4 hr. Red light elicited substantial photoaccumulation in the wild type and photodispersal in the white, non-photosynthetic mutant 1224-5/9f. The chromophore mediating the red-light response needs to be a non-photosynthetic pigment which remains presently unidentified. A whiteEuglena mutant, FB, which had retained a reduced stigma and a paraflagellar body, showed weak photoaccumulation. Two white mutants, 1224-5/1f and 1224-5/9f, both of which lacked the stigma and positive phototaxis, displayed during the first 90 min of irradiation photodispersal; after longer irradiations they showed instead photoaccumulation. These results contradict a widely held belief that the presence of a stigma represents a stringent requirement for photoaccumulation. Our results imply that phototaxis is not a prerequisite for photoaccumulation. Exogenous flavins and 5,10-methenyl-tetrahydrofolate (MTHF) influenced in a wavelength-dependent manner photoaccumulation and photodispersal. In the wild type FAD and riboflavin (RB) caused at 453 nm an increase of the responsiveness for photoaccumulation. The photoaccumulation of the white mutant FB, was sensitized by FMN and FAD. In the white mutant 1224-5/9f exogenous flavins lowered the threshold for photodispersal. FMN, which absorbs only blue light, altered also the responsiveness to red light: in the wild type FMN reduced photoaccumulation and in the white mutant 1224-5/9f it reduced photodispersal.  相似文献   

13.
The functional properties of purified glucose-6-phosphate dehydrogenase (G6PD) from the erythrocytes of Arctic foxes (Alopex lagopus) and silver foxes (Vulpes vulpes) were investigated. It was found that pH optima for G6PD range from 8.15 to 8.25 in Arctic foxes and from 10.2 to 10.4 in silver foxes. For G6P, the estimated K m values were 74×10–6 m (at pH 8.2) and 166×10–6 m (at pH 10.2) in Arctic foxes and 58×10–6 m (at pH 10.2) and 40×10–6 m (at pH 8.2) in silver foxes. The K m values for NADP were estimated as 62×10–6 m (at pH 8.2) and 86×10–6 m (at pH 10.2) in the Arctic foxes and 15×10–6 m (at pH 10.2) and 12×10–6 m (at pH 8.2) in the silver foxes. It was found that Mg2+ ions exert a significant activating effect on G6PD in the Arctic fox and do not affect appreciably its activity in the silver fox. The experimental data indicate that slight differences in the electrophoretic mobility of G6PD are associated with considerable functional differences in this enzyme between the two fox species.  相似文献   

14.
Summary Simultaneous capillary and luminal microperfusion studies were performed in the rat proximal tubule to determine the effects of the beta agonist isoproterenol and the alpha agonist phenylephrine on water absorption. Capillary and luminal perfusion solutions were composed such that organic solutes were not present, no bicarbonate was present in the lumen, and no chloride gradient was imposed. Under such conditions, water absorption (Jv) averaged 0.36±0.11 nl·min–1·mm–1. The addition of isoproterenol to the capillary solution in concentrations of 10–6 and 10–4 m resulted in significantly higherJv's of 0.68±0.10 and 0.71±0.11 nl·min–1·mm–1, respectively. The enhancing effect of isoproterenol was inhibited by the beta blocker propranolol (10–4 m), but not by the alpha blocker phentolamine (10–7 m). The addition of phenylephrine (10–6 m) to the capillary perfusion solution also resulted in a significantly higherJv of 0.84±0.14 nl·min–1·mm–1, an effect inhibited by phentolamine (10–7 m), but not by propranolol (10–4 m). Neither phentolamine nor propranolol alone in the concentrations indicated had an effect on water absorption. These experiments indicate that both alpha and beta agonists stimulate water absorption in the superficial proximal tubule of the rat. This effect appears to be relatively specific for each class of agonist, as demonstrated by the effects of the specific antagonists.  相似文献   

15.
Summary Intracellular Pb2+ ions can replace Ca2+ ions in stimulating the Ca-dependent K permeability of human red blood cells. In metabolically depleted resealed ghosts, the threshold for stimulation of86Rb efflux by internal Pb2+ is around 5×10–10 m, and stimulation is half-maximal at about 2×10–9 m, and maximal at 10–8 m Pb2+. There is no effect on22Na efflux in this concentration range.86Rb efflux is antagonized by internal Mg2+ ions, and by the channel-blocking drugs quinidine and diS-C2(5), as observed for the Ca-dependent K permeability in red cells. In ghosts containing EDTA, which prevents any internal effects of Pb2+ ions, external Pb2+ increases both22Na and86Rb permeability when its concentration exceeds 6×10–7 m. This effect is seemingly unrelated to the Ca-dependent K permeability. This work makes extensive use of Pb2+ ion buffers, and gives information about their preparation and properties.  相似文献   

16.
Summary Cadmium ion (Cd++) significantly increased potential difference (PD) and short-circuit current (SCC) across isolated frog skin when added to the outside Ringer's solution at 10–4, 10–3 and 5×10–3 m concentration. Resistance was reduced by 10–4 m Cd++ but not significantly changed by the higher concentrations. When SCC was first stimulated by vasopressin, 10–4 and 10–3 m Cd++ produced additive stimulation which was reversible by washing with Cd++-free Ringer's. If SCC was first stimulated by Cd++, further stimulation by vasopressin was additive with 10–4 m Cd++ but completely inhibited by 10–3 m Cd++. Elevating the calcium ion (Ca++) concentration of the outer Ringer's from 10–3 m to 5×10–3 m or 10–2 m prior to Cd++ treatment did not reduce the magnitude of SCC stimulation by Cd++. Removal of Ca++ from the outside Ringer's with 2×10–3 m EDTA increased SCC as predicted. Subsequent addition of 5×10–3 m Cd++ drastically reduced SCC below control levels while equimolar concentrations of Cd++ and EDTA reduced SCC only to control levels. These results suggest that Cd++ interacts with the components of the apical plasma membranes of epithelial cells which are associated with the stimulation of SCC by vasopressin and Ca++ removal and may be a useful probe for elucidating these components.  相似文献   

17.
We recently reported that M-1 mouse cortical collecting duct cells show nonselective cation (NSC) channel activity (Proc. Natl. Acad. Sci. USA 89:10262–10266, 1992). In this study, we further characterize the M-1 NSC channel using single-channel current recordings in excised inside-out patches. The M-1 NSC channel does not discriminate between Na+, K+, Rb+, Cs+, and Li+. It has a linear I-V relation with a conductance of 22.7±0.5 pS (n=78) at room temperature. The Pcation/ Panion ratio is about 60 and there is no measurable conductance for NMDG, Ca2+, Ba2+, and Mn2+. Cytoplasmic calcium activates the M-1 NSC channel at a threshold of 10–6 m and depolarization increases channel activity (NP o ). Cytoplasmic application of adenine nucleotides inhibits the M-1 NSC channel. At doses of 10–4 m and 10–3 m, ATP reduces NP o by 23% and 69%, respectively.Furthermore, since ADP (10–3 m) reduces NP o by 93%, the inhibitory effect of adenine nucleotides is not dependent on the presence of a -phosphoryl group and therefore does not involve protein phosphorylation. The channel is not significantly affected by 8-Br-cGMP (10–4 m) or by cGMP-dependent protein kinase (10–7 m) in the presence of 8-Br-cGMP (10–5 m) and ATP (10–4 m). The NSC channel is not sensitive to amiloride (10–4 m cytoplasmic and/or extracellular) but flufenamic acid (10–4 m) produces a voltage-dependent block, reducing NP o by 35% at depolarizing voltages and by 80% at hyperpolarizing voltages.We conclude that the NSC channel of M-1 mouse cortical collecting duct cells belongs to an emerging family of calcium-activated and nucleotide-sensitive nonselective cation channels. It does not contribute to amiloride-sensitive sodium absorption and is unlikely to be a major route for calcium entry. The channel is normally quiescent but may be activated under special physiological conditions, e.g., during volume regulation.The expert technical assistance of U. Fink and I. Doering-Hirsch is gratefully acknowledged. We thank A. Rabe and Dr. J. Disser for programming the computer software.This work was supported by a grant from the Deutsche Forschungsge-meinschaft (DFG grant Fr 233/9-1) and a grant from the National Institutes of Health (NIH grant DK-17433).  相似文献   

18.
The concentration dependence of the influx ofl-lysine in excised roots ofArabidopsis thaliana seedlings was analyzed for the wild-type (WT) and two mutants,rlt11 andraec1, which had been selected as resistant to lysine plus threonine, and to S-2-aminoethyl-l-cysteine, respectively. In the WT three components were resolved: (i) a high-affinity, low-capacity component [K m = 2.2 M;V max = 23 nmol·(g FW)–1·h–1]; (ii) a low-affinity, high-capacity component [K m = 159 M;V max = 742 nmol·(g FW)–1·h–1]; (iii) a component which is proportional to the external concentration, with a constant of proportionalityk = 104 nmol·(g FW)–1 h–1];·mM–1. The influx ofl-lysine in the mutants was lower than in the WT, notably in the concentration range 0.1–0.4 mM, where it was only 7% of that in the WT. In both mutants the reduced influx could be fully attributed to the absence of the low-affinity (high-K m ) component. This component most likely represents the activity of a specific basic-amino-acid transporter, since it was inhibited by several other basic amino acids (arginine, ornithine, hydroxylysine, aminoethylcysteine) but not byl-valine. The high-affinity uptake ofl-lysine may be due to the activity of at least two general amino acid transporters, as it was inhibitable byl-valine, and could be further dissected into two components with a high affinity (K i = 1–5 M; and a low affinity (K i = 0.5–1mM) forl-valine, respectively. Therlt11 andraecl mutant have the same phenotype and the corresponding loci were mapped on chromosome 1, but it is not yet clear whether they are allelic.Abbreviations AEC S-2-aminoethyl-l-cysteine - K i equilibrium constant - WT wild-type  相似文献   

19.
Summary Poly-L-lysine concentrations (10–6 m) which cause slight leakage of pigment from beet cells completely disrupt the kinetics of*K (labeled) absorption at 25°C in the range 0.01 to 50mm KCl. Lower concentrations of polylysine (10–7 to 10–9 m) interfere with potassium fluxes at both cell membranes, initially increasing efflux across the plasma membrane and decreasing the capacity of the cytoplasm to retain ions during flux experiments at 2°C. At 25°C, these concentrations of polylysine increase*K (labeled) absorption from 0.2mm KCl, but not from 10mm KCl. These responses are discussed in relation to ion transport via the three-compartment in-series model proposed for plant cells. Particular emphasis is placed on the role of the plasma membrane in K transport from solutions of low concentration.  相似文献   

20.
Summary A number of published data suggest a variable stoichiometry between the rates of cellular potassium uptake and net sodium transport (J Na) across the urinary bladder of the toad. This problem was examined by simultaneously studying the intracellular chemical activity of potassium (a K) with open-tip K+-selective microelectrodes and micropipets, and monitoringJ Na by measuring the short-circuit current (SCC). When bathed in the short-circuited state with solutions containing ana K of 2.7mm, the mean ±sem values for intracellulara K were 43±0.6mm.Ouabain, at a concentration of 10–2 m, reduced intracellulara K by 56–67% and SCC by 96–100%. At 5×10–4 m, ouabain reversibly reduced intracellulara K by 40–55%, and SCC by 63–68%; the inhibition of SCC was only partly reversible during the period of observation.Removal of external potassium reduced intracellulara K by 69–80% and SCC by 51–76%. Restoration of external potassium entirely returned intracellulara K to its control value, but only partially reversed the inhibition of SCC during the period of study. Furthermore, recovery ofa K began 19–43 min before that of SCC; recovery ofa K was 90–97% complete before any increase in SCC could be measured. Although other interpretations are possible, the simplest interpretation of the data is that the processes responsible for potassium accumulation and transepithelial sodium transport are not identical. We propose the existence of a separate transfer mechanism at the basolateral cell membrane, responsible for accumulating intracellular potassium, and not directly coupled to active sodium transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号