首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pendrin is a Cl(-)/HCO(3)(-) exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited (N(G)-nitro-l-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ~33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation.  相似文献   

2.
3.
4.
Bestrophins (VMD2, VMD2L1, VMD2L2, and VMD2L3) are a new family of anion channels. The mechanisms of their regulation are not yet well understood. Recently, we found that a domain (amino acids 356-364) in the C terminus of mouse VMD2L3 (mBest3) inhibited channel activity when it was expressed in HEK293 cells (Qu, Z., Cui, Y., and Hartzell, H. C. (2006) FEBS Lett. 580, 2141-2214). Here we show that this auto-inhibitory (AI) domain in mBest3 and human (h)Best3 is composed of seven critical residues, (356)IPSFLGS(362). Replacement of any residue (except Pro(357)) in the domain with alanine activated Cl(-) currents. Substitution of Pro(357) with other amino acids, especially phenylalanine, did activate currents. Membrane biotinylation demonstrated that nonfunctional mBest3 protein was trafficked to the plasma membrane, implying that the AI domain inhibited channel gating but not trafficking. mBest3-F359A and hBest3-G361A mutations induced outwardly rectifying currents, suggesting that the AI domain is associated with the channel pore or gating mechanism. Supporting this suggestion, the mBest3 AI domain was demonstrated to be located within a membrane-associated region. When the wild-type mBest3 C terminus (amino acids 292-669) was expressed in HEK293 cells, the protein was located mainly in the particulate fraction, but it became soluble when a sequence containing the AI domain was deleted (Delta353-404). There is an AI domain ((357)QPSFQGS(363)) in mouse VMD2L1 (mBest2) as well, but its inhibitory effect is competed by a downstream facilitatory sequence (amino acids 405-454). These results suggest that an auto-inhibitory mechanism in C termini may be universal among bestrophins investigated in the study.  相似文献   

5.
Podocyte dysfunction results in glomerular diseases accounted for 90% of end‐stage kidney disease. The evolutionarily conserved Notch signalling makes a crucial contribution in podocyte development and function. However, the underlying mechanism of Notch pathway modulating podocyte differentiation remains less obvious. Autophagy, reported to be related with Notch signalling pathways in different animal models, is regarded as a possible participant during podocyte differentiation. Here, we found the dynamic changes of Notch1 were coincided with autophagy: they both increased during kidney development and podocyte differentiation. Intriguingly, when Notch signalling was down‐regulated by DAPT, autophagy was greatly diminished, and differentiation was also impaired. Further, to better understand the relationship between Notch signalling and autophagy in podocyte differentiation, rapamycin was added to enhance autophagy levels in DAPT‐treated cells, and as a result, nephrin was recovered and DAPT‐induced injury was ameliorated. Therefore, we put forward that autophagy is involved in kidney development and podocyte differentiation regulated by Notch signalling.  相似文献   

6.
Several isoforms of connexin (Cx) proteins have been identified in a variety of tissues where they play a role in intercellular communication, either as the components of gap junctions or as large, nonselective pores known as hemichannels. This investigation seeks to identify the localization and regulation of Cx30.3 in mouse, rat, and rabbit kidney using a Cx30.3(+/lacZ) transgenic approach and immunofluorescence. Cx30.3 was detected in all three species and predominantly in the renal medulla. Both the nuclear lacZ staining indicative of Cx30.3 expression and indirect immunohistochemistry provided the same results. Cx30.3 immunolabeling was mainly punctate in the mouse, typical for gap junctions. In contrast, it showed continuous apical plasma membrane localization in certain tubule segments in the rat and rabbit kidney, suggesting that it may also function as hemichannels. In the cortex, Cx30.3 was localized in the intercalated cells of the cortical collecting duct, because the immunoreactive cells did not label for AQP2, a marker for principal cells. In the medulla, dense Cx30.3 staining was confined to the ascending thin limbs of the loop of Henle, because the immunoreactive cells did not label for AQP1, a marker of the descending thin limbs. Immunoblotting studies indicated that Cx30.3 expression was unchanged in response to either high or low salt intake or in spontaneously hypertensive rats. Cx30.3 appears to be constitutively expressed in certain renal tubular segments and cells and its role in overall kidney function remains to be investigated.  相似文献   

7.
As part of a study on the regulation of renal ammoniagenesis in the mouse kidney, we investigated the effect of chronic metabolic acidosis on glutamine synthesis by isolated mouse renal proximal tubules. The results obtained reveal that, in tubules from control mice, glutamine synthesis occurred at high rates from glutamate and proline and, to a lesser extent, from ornithine, alanine, and aspartate. A 48 h, metabolic acidosis caused a marked inhibition of glutamine synthesis from near-physiological concentrations of both alanine and proline that were avidly metabolized by the tubules; metabolic acidosis also greatly stimulated glutamine utilization and metabolism. These effects were accompanied by a large increase (i) in alanine, proline, and glutamine gluconeogenesis and (ii) in ammonia accumulation from proline and glutamine. In the renal cortex of acidotic mice, the activity of phosphoenolpyruvate carboxykinase increased 4-fold, but that of glutamate dehydrogenase did not change; in contrast with what is known in the rat renal cortex, metabolic acidosis markedly diminished the glutamine synthetase activity and protein level, but not the glutamine synthetase mRNA level in the mouse renal cortex. These results strongly suggest that, in the mouse kidney, glutamine synthetase is an important regulatory component of the availability of the ammonium ions to be excreted for defending systemic acid-base balance. Furthermore, they show that, in rodents, the regulation of renal glutamine synthetase is species-specific.  相似文献   

8.
Members of the SLC26 transporter family play an essential role in several epithelial functions, as revealed by diseases associated with mutations in members of the family. Several members were shown to function as Cl(-) and HCO(3)(-) transporters that likely play an important role in epithelial Cl(-) absorption and HCO(3)(-) secretion. However, the mechanism of most transporters is not well understood. SLC26A7 is a member of the SLC26 transporter family reported to be expressed in the basolateral membrane of the cortical collecting duct and parietal cells and functions as a coupled Cl(-)/HCO(3)(-) exchanger. In the present work we examined the transport properties of SLC26A7 to determine its transport characteristics and electrogenicity. We found that when expressed in Xenopus oocytes or HEK293 cells SLC26A7 functions as a pH(i)-regulated Cl(-) channel with minimal OH(-)/HCO(3)(-) permeability. Expression of SLC26A7 in oocytes or HEK293 cells generated a Cl(-) current with linear I/V and an instantaneous current that was voltage- and time-independent. Based on measurement of reversal potential the selectivity of SLC26A7 is NO(3)(-)>Cl(-)=Br(-)=I(-)>SO(4)(2-)=Glu(-), although I(-) partially inhibited the current. Incubating the cells with HCO(3)(-) or butyrate acidified the cytosol and increased the selectivity of SLC26A7 for Cl(-). Measurement of membrane potential and pH(i) showed minimal OH(-) and HCO(3)(-) transport by SLC26A7 when the cells were incubated in Cl(-)-containing or Cl(-)-free media. The activity of SLC26A7 was inhibited by all inhibitors of anion transporters tested, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, diphenylamine-2-carboxylic acid, and glybenclamide. These findings reveal that SLC26A7 functions as a unique Cl(-) channel that is regulated by intracellular H(+).  相似文献   

9.
10.
Evidence that the metabolic acidosis threshold is the anaerobic threshold   总被引:3,自引:0,他引:3  
We evaluated maximal O2 uptake (VO2max), the metabolic acidosis threshold determined by the V-slope analysis [plot of CO2 output (VCO2) as a function of oxygen uptake (VO2)], the ratio of increase in VO2 to work rate increment (delta VO2/delta WR), the upper slope (S2) of the V-slope analysis, and the VO2 for work below and above the metabolic acidosis threshold to determine whether the changes in O2 transport caused by increased carboxyhemoglobin (HbCO) affected these parameters and variables. Ten normal subjects (aged 32.8 +/- 7.1 yr) performed symptom-limited incremental exercise tests in a ramp pattern on a cycle ergometer while breathing air and air with added carbon monoxide to cause HbCO to be approximately 11% and 20%. VO2max decreased by 11.6 and 19.3%, the metabolic acidosis threshold decreased by 11.9 and 19.6%, delta VO2/delta WR decreased by 8.9 and 14.0%, and S2 increased by 13.6 and 21.8% when HbCO was increased to 11 and 20%, respectively. Most importantly, VO2 was unchanged related to work rate below the metabolic acidosis threshold during the tests with increased HbCO but was reduced at the work rates above the metabolic acidosis threshold. These findings are consistent with the concept that the metabolic acidosis threshold is synonymous with an anaerobic threshold, i.e., the latter demarcating the VO2 above which the contracting muscles are not adequately supplied with O2 but below which they are.  相似文献   

11.
12.
The instantaneous velocity plots of Dictyostelium discoideum amoebae responding to natural waves and simulated temporal waves of cAMP with periods of 7 min are highly similar. This similarity has been used to deduce the dynamics of a natural wave crossing an amoeba, and the behavior of amoebae has been characterized during the different phases of a natural wave with a computer-assisted dynamic image analyzing system. During the first approximately 150 sec of the front of a natural wave, cells move persistently toward the aggregation center, with high instantaneous velocity and a decreased frequency of lateral pseudopod formation. During the last 30 sec of the front of the wave and the first 30 sec of the back of the wave, there is a "freeze" in cell shape and a dramatic depression in cell motility, pseudopod formation, and intracellular particle movement. During the last 180 sec of the back of the wave, there is a rebound in pseudopod formation, but it is random in direction and leads to no net cellular translocation. The data suggest that all of the behavior of a cell but orientation during the translocation phase is mediated by the temporal dynamics of the wave. The data also suggest that orientation toward the aggregation center occurs early in the front of the wave and that, once oriented, cells move in a blind fashion during the translocation phase.  相似文献   

13.
Osteoclast resorb bone in an acid compartment formed by the bone-attachment site. The low pH of the resorption compartment provides a lysosome-like milieu suitable for acid proteases to degrade collagen. Solubilization of the hydroxyapatite that makes up bone mineral consumes about 2 moles of protons per moles of calcium dissolved, requiring a massive proton flux to maintain a low pH in the resorption compartment. In order to determine how the osteoclast maintains a physiological cytoplasmic pH while secreting massive amounts of acid, we studied the intracellular pH of osteoclasts using esterified fluorescein derivatives while controlling the electrolyte composition of the medium. The principal finding is that osteoclasts have a high capacity for chloride/bicarbonate exchange which enables them to maintain normal intracellular pH in the face of a large loading of base equivalents. Thus, the overall process of proton secretion during bone resorption is similar to the polarized acid elimination by renal epithelia, involving a proton pump on one surface of the cell, and a Cl-/HCO3- exchange to maintain cytoplasmic pH.  相似文献   

14.
15.
Sulfated glycoprotein-2 (SGP-2) is a secreted, dimeric, glycosylated protein synthesized by a number of different epithelial cell types. Although its function is not yet understood, SGP-2 has been hypothesized to be involved in such diverse processes as the promotion of cell-cell interactions, spermatogenesis, modulation of the complement system, and programmed cell death. We have now found that the SGP-2 gene is developmentally regulated in the mouse kidney. SGP-2 gene expression is first detected in the condensing nephrogenic mesenchyme and is subsequently down-regulated during the maturation of the glomerular epithelia, proximal tubules, and collecting ducts. SGP-2 continues to be expressed in the mature kidney in distal tubules and in the urothelial lining of the calyx and papilla. We have also examined the expression of the SGP-2 gene in polycystic kidneys of the C57BL/6J-cpk mouse, a model of autosomal recessive polycystic kidney disease in which there is development of epithelial-lined cysts arising primarily from the collecting duct system. Abnormally high levels of SGP-2 mRNA were found in the cyst wall epithelium of polycystic kidneys. The expression of the SGP-2 gene in normal development suggests that it plays a role in differentiating epithelial structures; and the abnormally high levels of SGP-2 gene expression in polycystic kidneys suggests that the cells lining cysts are not fully differentiated. It is possible, therefore, that polycystic kidney disease is caused by a defective developmental process in which there is a delay in terminal differentiation.  相似文献   

16.
17.
18.
Alpha-naphthylisothiocyanate (ANIT) is a hepatotoxicant that causes acute cholestatic hepatitis with infiltration of neutrophils around bile ducts and necrotic hepatocytes. The objective of this study was to determine whether the beta2-integrin CD18, which plays an important role in leukocyte invasion and cytotoxicity, contributes to ANIT-induced hepatic inflammation and liver injury. Mice with varying levels of leukocyte CD18 expression were treated with ANIT and monitored for hepatic neutrophil influx and liver injury over 48 h. Mice that were partially deficient in CD18 (30% of normal levels) developed periportal inflammation and widespread hepatic necrosis after ANIT treatment in a pattern identical to that in wild-type (WT) mice. In contrast, mice that completely lack CD18 (CD18 null) were resistant to ANIT toxicity. Forty-eight hours after ANIT, CD18-null mice displayed 60% lower serum alanine aminotransferase (ALT) levels and 75% less hepatic necrosis, as shown by morphometry, than WT mice. This was true despite evidence that ANIT still provoked hepatic neutrophil influx in CD18-null mice. WT mice could also be protected from ANIT-induced hepatocellular necrosis, by depleting the animals of neutrophils. Notably, neither CD18-null mice nor neutrophil-depleted WT mice exhibited any attenuation of bile duct injury or cholestasis due to ANIT. We conclude from these experiments that neutrophils invade ANIT-treated livers in a CD18-independent fashion but utilize CD18 to induce hepatocellular cytotoxicity. The results emphasize that neutrophil-mediated amplification of ANIT-induced liver injury is directed toward hepatocytes rather than cholangiocytes. In fact, the data indicate that the majority of ANIT toxicity toward hepatocytes in vivo is neutrophil driven.  相似文献   

19.
1. Metabolite contents were determined in freeze-clamped kidney from acidotic and starved rats in order to elucidate the rate-controlling steps which are responsible for the acceleration of gluconeogenesis in these situations. 2. In the kidney of rats which were made mildly acidotic by replacing drinking water with 1.5% ammonium chloride for 7 to 10 days (when the plasma bicarbonate concentration was 20mm) the content of phosphoenolpyruvate was increased from the control value of 35 to 63nmol/g and that of 3-phosphoglycerate from 85 to 154nmol/g. 3. Similar but smaller changes in these metabolites occurred in the kidney of starved rats but there were no such changes in the kidney of rats 12h after an infusion of 0.25m-hydrochloric acid, although plasma bicarbonate concentration fell to about 10mm on this treatment. 4. The renal concentration of glucose 6-phosphate was not raised in rats that received ammonium chloride, but was increased in starved and acutely acidotic rats. 5. The concentrations of alpha-oxoglutarate, malate and citrate were less than half the normal value in the kidney of both groups of acidotic rats. These changes can be accounted for on the basis of equilibrium relationships among reversible reactions, particularly as a result of the rise in intracellular ammonia content. A less marked decrease in alpha-oxoglutarate and malate was found in the kidney of starved rats. 6. The renal cortical cytoplasmic oxaloacetate concentration was calculated to be decreased in acidotic and starved rats. 7. These results are discussed in the light of the known enhancement by acidosis and starvation of renal gluconeogenesis. In particular they support the suggestion that the phosphoenolpyruvate carboxykinase reaction is a site of control of gluconeogenesis in kidney in these conditions.  相似文献   

20.
The most unique feature in the replication of mitochondrial DNA (mtDNA) is that most of the newly synthesized heavy strands (H-strands) terminate prematurely, resulting in the formation of displacement loop (D-loop) strands. Only the H-strand which proceeds past the termination site is a true nascent H-strand leading to the overall replication on a circular mtDNA molecule. The physiological significance of the D-loop formation has long been unclear. To examine the role of premature termination in mtDNA replication, we therefore developed a method for selectively measuring both the total amount of nascent H-strands and the amount of true nascent H-strands using ligation-mediated polymerase chain reaction, which, for the first time, enabled us to estimate the frequency of premature termination. The stimulation of cell proliferation with interleukin 2 and phytohemagglutinin in human peripheral T lymphocytes caused an increase in the net replication rate of mtDNA. In stimulated cells, in comparison to resting ones, the amount of true nascent H-strands increased approx. 2.6-fold while the total amount of nascent H-strands remained unchanged, indicating that premature termination decreased while the initiation of replication remained the same. Our findings thus demonstrate the first clear example that premature termination plays a primary role in the up-regulation of the net rate of mtDNA replication in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号