首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Neurons within cardiorespiratory regions of the rostral ventrolateral medulla (RVLM) have been shown to be excited by local hypoxia. To determine the electrophysiological properties of these excitatory responses to hypoxia, we developed a primary dissociated cell culture system to examine the intrinsic response of RVLM neurons to hypoxia. Neonatal rat neurons plated on medullary astrocyte monolayers were studied using the whole cell perforated patch-clamp technique. Sodium cyanide (NaCN, 0.5-10 mM) was used, and membrane potential (V(m)), firing frequency, and input resistance were examined. In 11 of 19 neurons, NaCN produced a V(m) depolarization, an increase in firing frequency, and a decrease in input resistance, suggesting the opening of a cation channel. The hypoxic depolarization had a linear dose response and was dependent on baseline V(m), with a greater response at more hyperpolarized V(m). In 8 of 19 neurons, NaCN produced a V(m) hyperpolarization, decrease in firing frequency, and variable changes in input resistance. The V(m) hyperpolarization exhibited an all-or-none dose response and was independent of baseline V(m). These differential responses to NaCN were retained after synaptic blockade with low Ca(2+)-high Mg(2+) or TTX. Thus hypoxic excitation 1) is maintained in cell culture, 2) is an intrinsic response, and 3) is likely due to the increase in a cation current. These hypoxia-excited neurons are likely candidates to function as central oxygen sensors.  相似文献   

3.
The present study was performed to examine the effects of acute ethanol exposure on N-methyl-D-aspartate (NMDA)-induced responses and the development of acute tolerance in rat rostral ventrolateral medulla (RVLM) in vivo and in vitro. Repeated microinjections of NMDA (0.14 nmol) into the RVLM every 30 min caused reproducible increases in mean arterial pressure in urethane-anesthetized rats weighing 325–350 g. Intravenous injections of ethanol (0.16 or 0.32 g, 1 ml) inhibited NMDA-induced pressor effects in a blood-concentration-dependent and reversible manner. The inhibitory effect of ethanol was reduced over time during continuous infusion of ethanol or on the second injection 3.5 h after prior injection of a higher dose of ethanol (0.32 g). A high dose of ethanol (0.32 g) had no significant effects on-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,-aminobutyric acid and glycine-induced changes in blood pressure. In vitro studies showed that ethanol (10–100 mM) dose-dependently inhibited inward currents elicited by pressure ejection of NMDA (10 mM) in RVLM neurons of neonatal brainstem slice preparations. When the superfusion time of ethanol (100 mM) was increased to 50 min, its inhibitory effect decreased gradually after 30–40 min in 60% of RVLM neurons examined. These data suggested that ethanol inhibition and subsequent tolerance development is associated with changed sensitivity to NMDA in the RVLM, which may play important roles in the ethanol regulation of cardiovascular function.  相似文献   

4.
Sex differences may play a significant role in determining the risk of hypertension. Bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are involved in the tonic regulation of arterial pressure and participate in the central mechanisms of hypertension. Angiotensin II (ANG II) acting on angiotensin type 1 (AT(1)) receptors in RVLM neurons is implicated in the development of hypertension by activating NADPH oxidase and producing reactive oxygen species (ROS). Therefore, we analyzed RVLM bulbospinal neurons to determine whether there are sex differences in: 1) immunolabeling for AT(1) receptors and the key NADPH oxidase subunit p47 using dual-label immunoelectron microscopy, and 2) the effects of ANG II on ROS production and Ca(2+) currents using, respectively, hydroethidine fluoromicrography and patch-clamping. In tyrosine hydroxylase-positive RVLM neurons, female rats displayed significantly more AT(1) receptor immunoreactivity and less p47 immunoreactivity than male rats (P < 0.05). Although ANG II (100 nM) induced comparable ROS production in dissociated RVLM bulbospinal neurons of female and male rats (P > 0.05), an effect mediated by AT(1) receptors and NADPH oxidase, it triggered significantly larger dihydropyridine-sensitive long-lasting (L-type) Ca(2+) currents in female RVLM neurons (P < 0.05). These observations suggest that an increase in AT(1) receptors in female RVLM neurons is counterbalanced by a reduction in p47 levels, such that ANG II-induced ROS production does not differ between females and males. Since the Ca(2+) current activator Bay K 8644 induced larger Ca(2+) currents in females than in male RVLM neurons, increased ANG II-induced L-type Ca(2+) currents in females may result from sex differences in calcium channel densities or dynamics.  相似文献   

5.
Granata AR 《Neuro-Signals》2004,13(5):241-247
We used an intracellular recording technique in vitro to investigate the effects of moxonidine on neurons in the rostral ventrolateral medulla (RVLM) with electrophysiological properties similar to premotor sympathetic neurons in vivo. These neurons were classified as firing regularly and irregularly, according to previous reports. Moxonidine is a sympathoinhibitory and antihypertensive agent that is thought to be a ligand of alpha(2)-adrenergic receptors and imidazoline type-1 receptors in the RVLM. Moxonidine (2-10 microM) was applied to the perfusate on 4 irregularly firing neurons, and 2 regularly firing neurons. Moxonidine (2 microM) produced only minor depolarization in 2 of these neurons. However, on 4 tested neurons, moxonidine (10 microM) elicited a profound inhibitory effect with hyperpolarization (near -20 mV); these neurons practically ceased firing. These changes were partially reversible. The results would indicate that neurons in the RVLM, recorded in vitro and with similar electrophysiological characteristics to a group of neurons previously identified in vivo in the same bulbar region as barosensitive premotor sympathetic neurons, can be modulated by imidazoline-derivative adrenergic agonists. These results could help to understand the hypotensive effects of moxonidine.  相似文献   

6.
Recently, unique regions in the rostral ventrolateral medulla (RVLM) have been found to be oxygen sensitive. However, the mechanism of sensing oxygen in these RVLM regions is unknown. Because heme oxygenase (HO) has been shown to be involved in the hypoxic responses of the carotid body and pulmonary artery, the aim of this study was to determine whether HO is present in the RVLM and whether expression of HO is altered by chronic hypoxia. Adult rats were exposed to hypoxia (10% O(2)) or normoxia (21% O(2)) for 10 days, and the mRNA for HO-1 and HO-2 was examined in the RVLM by using RT-PCR. Expression of HO-2 mRNA was seen in the RVLM of both control and hypoxic samples, whereas expression of HO-1 mRNA was only seen in the RVLM of hypoxic samples. HO-2 was immunocytochemically localized in brain sections (40 microm) to the C1 region and pre-B?tzinger complex of the RVLM. Together, these results indicate that HO-2 is present in the RVLM under control conditions and that HO-1 is induced in the RVLM during chronic hypoxia, consistent with a potential role for HO in the oxygen-sensing function of these cardiorespiratory RVLM regions.  相似文献   

7.
We investigated the responsesof systemic arterial pressure and vertebral sympathetic nerve activityto glutamate microinjections (0.1 M, 70 nl) in the dorsomedial (DM) andthe rostral ventrolateral medulla (RVLM) before hypoxia and afterreoxygenation (posthypoxia) after various degrees of hypoxia inanesthetized cats. Hypoxia was produced by ventilating 5%O2 and 95% N2 for different durations (hypoxiaI-III). In intact cats, the glutamate-induced systemic arterialpressure and vertebral nerve activity responses of the DM weredepressed after all degrees of hypoxia. Posthypoxic depression in theRVLM, however, was not observed until hypoxia II and III. Precolliculardecerebration prevented depression in the RVLM, but, for the DM, it waseffective only for hypoxia I. Baro- and chemoreceptor denervationabolished all posthypoxic depression in both the DM and the RVLM.Pressor responses to tyramine (100-400 µg/kg iv) remainedunchanged after all degrees of hypoxia. These results suggest that theDM is more susceptible to hypoxia than the RVLM. The peripheral baro-and chemoreceptors and the suprapontine structures apparently play animportant role in posthypoxic depression. Moreover, the depression isnot due to the postganglionic norepinephrine depletion.

  相似文献   

8.
Ischemic stimulation of cardiac receptors reflexly excites the cardiovascular system. However, the supraspinal mechanisms involved in this reflex are not well defined. This study examined the responses of barosensitive neurons in the rostral ventrolateral medulla (RVLM) to stimulation of cardiac receptors and the afferent pathways involved in these responses. Single-unit activity of RVLM neurons was recorded in alpha-chloralose-anesthetized rats. Cardiac receptors were stimulated by epicardial application of 10 microg/ml of bradykinin (BK). Barosensitive neurons were silenced by stimulation of baroreceptors. Application of BK increased the mean arterial pressure from 65.2 +/- 1.9 to 89.3 +/- 2.9 mmHg and excited RVLM barosensitive neurons from 6.2 +/- 0.7 to 10.7 +/- 0.9 impulses/s (P < 0.05, n = 40). BK had no effect on 21 nonbarosensitive neurons. Blockade of stellate ganglia abolished the response of barosensitive neurons to BK. Cervical vagotomy significantly increased the baseline discharges of RVLM barosensitive neurons but had no effect on their responses to BK. Thus this study indicates that stimulation of cardiac receptors selectively activates RVLM barosensitive neurons through sympathetic afferent pathways. This information suggests that the RVLM barosensitive neurons are likely involved in the sympathetic control of circulation during myocardial ischemia.  相似文献   

9.
Previous work from this laboratory has demonstrated that the chemical activation of cell bodies in the caudal ventrolateral medulla of chloralose-anesthetized dogs decreased bronchomotor tone by withdrawing cholinergic input to airway smooth muscle. In the present study we determined the bronchomotor responses to microinjection of DL-homocysteic acid (100 mM; 25-50 nl) into the rostral ventrolateral (RVL) medulla of chloralose-anesthetized dogs. Total lung resistance was used as a functional index of bronchomotor tone. Microinjection of DL-homocysteic acid into the 20 sites located in the lateral aspect of the RVL medulla increased both total lung resistance [from 6.5 +/- 0.4 to 9.1 +/- 0.8 (SE) cmH2O.l-1.s; P less than 0.05] and mean arterial pressure (from 125 +/- 5 to 148 +/- 8 mmHg; P less than 0.05). Microinjection of this amino acid into nine sites located in the medial aspect of the RVL medulla increased mean arterial pressure (from 130 +/- 6 to 153 +/- 6 mmHg; P less than 0.05) but had no effect on total lung resistance. We confirmed in three sites that the increase in total lung resistance evoked by microinjection of DL-homocysteic acid was accompanied by an increase in tracheal smooth muscle tension. The increase in total lung resistance evoked by DL-homocysteic acid was not affected by beta-adrenergic blockade but was abolished by muscarinic blockade.  相似文献   

10.
We determined the effect of microinjection of ANG-(1-7) and ANG II into two key regions of the medulla that control the circulation [rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively)] on baroreflex control of heart rate (HR) in anesthetized rats. Reflex bradycardia and tachycardia were induced by increases and decreases in mean arterial pressure produced by intravenous phenylephrine and sodium nitroprusside, respectively. The pressor effects of ANG-(1-7) and ANG II (25 pmol) after RVLM microinjection (11 +/- 0.8 and 10 +/- 2 mmHg, respectively) were not accompanied by consistent changes in HR. In addition, RVLM microinjection of these angiotensin peptides did not alter the bradycardic or tachycardic component of the baroreflex. CVLM microinjections of ANG-(1-7) and ANG II produced hypotension (-11 +/- 1.5 and -11 +/- 1.9 mmHg, respectively) that was similarly not accompanied by significant changes in HR. However, CVLM microinjections of angiotensins induced differential changes in the baroreflex control of HR. ANG-(1-7) attenuated the baroreflex bradycardia (0.26 +/- 0.06 ms/mmHg vs. 0.42 +/- 0.08 ms/mmHg before treatment) and facilitated the baroreflex tachycardia (0.86 +/- 0.19 ms/mmHg vs. 0.42 +/- 0.10 ms/mmHg before treatment); ANG II produced the opposite effect, attenuating baroreflex tachycardia (0.09 +/- 0.06 ms/mmHg vs. 0.31 +/- 0.07 ms/mmHg before treatment) and facilitating the baroreflex bradycardia (0.67 +/- 0.16 ms/mmHg vs. 0.41 +/- 0.05 ms/mmHg before treatment). The modulatory effect of ANG II and ANG-(1-7) on baroreflex sensitivity was completely abolished by peripheral administration of methylatropine. These results suggest that ANG II and ANG-(1-7) at the CVLM produce a differential modulation of the baroreflex control of HR, probably through distinct effects on the parasympathetic drive to the heart.  相似文献   

11.
This study determined the effect of destruction of rostral ventrolateral medulla (RVLM)-C1 cells on integrated sympathetic and hormonal responses to hypotension or glucoprivation. Injection of anti-dopamine beta-hydroxylase-saporin into the RVLM resulted in 29-99% depletion of RVLM-C1 neurons and approximately 60% reduction in the number of A5 neurons. As in our previous study in unanesthetized rats, resting mean arterial pressure (MAP) was reduced by approximately 10 mmHg in rats with >80% depletion of RVLM-C1 cells compared with control rats, although resting heart rate (HR) did not differ significantly. In the present study, resting plasma levels of norepinephrine (NE) did not differ significantly between control rats and rats with >80% depletion of RVLM-C1 cells, although there was a tendency for RVLM-C1 lesioned rats to have lower levels. Also consistent with our previous study, hydralazine (HDZ)-evoked hypotension resulted in smaller increases in HR and plasma levels of NE in rats with >80% depletion of RVLM-C1 cells compared with control rats. Furthermore, the elevated plasma levels of posterior pituitary hormones vasopressin and oxytocin evoked by HDZ were blunted in RVLM-C1 lesioned rats compared with control rats, even though MAP fell to lower levels in the lesioned rats. Plasma renin activity, plasma osmolality, and plasma protein concentrations did not differ between control rats and rats with >80% depletion of RVLM-C1 neurons. In response to systemic administration of 2-deoxyglucose, the circulating level of epinephrine and the resulting hyperglycemia were attenuated in rats with >80% depletion of RVLM-C1 cells compared with control rats. These results demonstrate that RVLM-C1 cells, in addition to playing a role in acute cardiovascular reflexes, play an important role in integrated sympathetic and hormonal responses to homeostatic challenges such as hypotension and glucoprivation.  相似文献   

12.
Wang WZ  Wang XM  Rong WF  Wang JJ  Yuan WJ 《生理学报》2000,52(6):468-472
实验采用细胞外记录和微电泳等电生理方法,研究乙酰胆碱(ACh)对氨基甲酸乙酯麻醉的大鼠头端延髓腹外侧区(RVLM)前交感神经元放电频率的影响。在RVLM共记录到35个前交感神经元,微电泳ACh能增加其放电(P〈0.05),并且具有剂量依赖性。其中22个神经元微电泳M型胆碱受体阻断剂阿托品(ATR)后能明显降低前交感神经元的基础放电(P〈0.05)和完全阻断ACh引起的神经元兴奋作用;分别向其余7和  相似文献   

13.
Wang WZ  Rong WF  Wang CM  Wang JW  Wang JJ  Yuan WJ 《生理学报》2001,53(4):270-274
实验用多管微电极细胞外记录氨基甲酸乙酯麻醉的SD大鼠延髓头端腹外侧区(RVLM)神经元的活动,用电刺激主动脉神经和静脉注射苯肾上腺素激活压力感受器反射等方法鉴定心血管神经元,在RVLM内共记录到145个自发放电的神经元,其中33个为心血管神经元,31个为伤害调制性神经元,81个为未知功能神经元。33个心血管神经元微电泳硫酸皮质酮(CORT)后,25个(76%)神经元放电迅速加快,8个(24%)自发放电没有变化。伤害刺激引起兴奋的31个伤害调制性神经元,微电泳CORT后19个(64%)神经元放电抑制,而2个(6%)兴奋,其余10个(30%)没有反应,功能不明的81个神经元在微电泳CORT后,32个(40%0兴奋,5个(6%)抑制,44个(54%)没有反应,以上结果证明CORT可能通过非基因组机制快速影响RVLM神经元的活动,提示在应激等情况下CORT的快速作用机制可能在心血管和抗伤害等活动整合中具有一定意义。  相似文献   

14.
Fan MX  Li X  Wang J  Cao YX  Shen LL  Zhu DN 《生理学报》2006,58(3):193-200
采用多管微电泳结合细胞外记录的方法研究了肾上腺髓质素(adrenomedullin,ADM)对大鼠延髓头端腹外侧区(rostral ventrolateral medulla,rVLM)压力反射敏感性神经元电活动的作用及其可能机制.结果显示在29个rVLM压力反射敏感神经元中,20个神经元在30、60和90 nA的电流微电泳大鼠ADM(rADM)过程中,放电频率由(10.8±2.7)spikes/s分别增加到(14.6±3.6)、(19.8±4.7)和(31.9±6.4)spikes/s(P<0.05,n=20).微电泳rADM特异性受体阻断剂人ADM(human ADM,hADM)(22-52)可明显减小神经元放电频率的增加幅度,比正常放电频率仅增加15.4%[(11.4±2.5)sipkes/s,P<0.05,n=10],而降钙素基因相关肽1(CGRP1)受体阻断剂hCGRP(8-37)对rADM兴奋性神经元电活动影响较小.在另外23个神经元中,10个神经元的放电频率在10、20和40 nA电流微电泳神经型NOS(nNOS)抑制剂7-NiNa过程中放电减少,由正常的(10.1±3.5)spikes/s分别减少为(7.5±2.5)、(5.3±2.1)和(3.1±1.4)spikes/s(P<0.05,n=10).在微电泳7-NiNa过程中同时微电泳rADM,则rADM增加神经元放电频率的效应减弱,增加幅度为基础水平的17%[(6.2±1.9)spikes/s].8个神经元在10、20和40 nA电流微电泳诱导型NOS抑制剂(iNOS)aminoguanidine(AG)过程中放电频率由(11.5±5.1)spikes/s增加到(17.8±5.6)、(22.5±6.3)和(29.1±6.4)spikes/s(P<0.05,n=8),rADM与AG同时微电泳时,AG对rADM本身增加神经元放电的效应无明显影响.上述结果提示,rADM在rVLM可通过其特异性受体或来源于nNOS的NO作用于压力反射敏感神经元,使其活动增强而发挥调节心血管活动的作用.  相似文献   

15.
Stimulation of cardiac mechanoreceptors during volume expansion elicits reflex compensatory changes in sympathetic nerve activity (SNA). The hypothalamic paraventricular nucleus (PVN) and nucleus of the tractus solitarius (NTS) are autonomic regions known to contribute to this reflex. Both of these nuclei project to the rostral ventrolateral medulla (RVLM), critical in the tonic generation of SNA. Recent reports from our laboratory show that these pathways 1) are activated following cardiac mechanoreceptor stimulation, and 2) produce nitric oxide, known to influence SNA. The aims of the present study were to determine whether 1) the activated neurons within the PVN and NTS were nitrergic and 2) these neurons projected to the RVLM. Animals were prepared, under general anesthesia, by microinjection of a retrogradely transported tracer into the pressor region of the RVLM and the placement of a balloon at the right venoatrial junction. In conscious rats, the balloon was inflated to stimulate the cardiac mechanoreceptors or was left uninflated. Balloon inflation elicited a significant increase in Fos-positive neurons in the parvocellular PVN (sevenfold) and NTS (fivefold). In the PVN, 51% of nitrergic neurons and 61% of RVLM-projecting nitrergic neurons were activated. In the NTS, these proportions were 8 and 18%, respectively. The data suggest that nitrergic neurons within the PVN and, to a lesser extent, in the NTS, some of which project to the RVLM, may contribute to the central pathways influencing SNA elicited by cardiac mechanoreceptor stimulation.  相似文献   

16.
Water deprivation is associated with increased excitatory amino acid (EAA) drive of the rostral ventrolateral medulla (RVLM), but the mechanism is unknown. This study tested the hypotheses that the increased EAA activity is mediated by decreased blood volume and/or increased osmolality. This was first tested in urethane-anesthetized rats by determining whether bilateral microinjection of kynurenate (KYN, 2.7 nmol) into the RVLM decreases arterial pressure less in water-deprived rats after normalization of blood volume by intravenous infusion of isotonic saline or after normalization of plasma osmolality by intravenous infusion of 5% dextrose in water (5DW). Water-deprived rats exhibited decreased plasma volume and elevated plasma osmolality, hematocrit, and plasma sodium, chloride, and protein levels (all P < 0.05). KYN microinjection decreased arterial pressure by 24 +/- 2 mmHg (P < 0.05; n = 17). The depressor response was not altered following isotonic saline infusion but, while still present (P < 0.05), was reduced (P < 0.05) to -13 +/- 2 mmHg soon after 5DW infusion. These data suggest that the high osmolality, but not low blood volume, contributes to the KYN depressor response. To further investigate the action of increased osmolality on EAA input to RVLM, water-replete rats were also studied after hypertonic saline infusion. Whereas KYN microinjection did not decrease pressure immediately following the infusion, a depressor response gradually developed over the next 3 h. Lumbar sympathetic nerve activity also gradually increased to up to 167 +/- 19% of control (P < 0.05) 3 h after hypertonic saline infusion. In conclusion, acute and chronic increases in osmolality appear to increase EAA drive of the RVLM.  相似文献   

17.
18.
The responses to vestibular stimulation of brain stem neurons that regulate sympathetic outflow and blood flow have been studied extensively in decerebrate preparations, but not in conscious animals. In the present study, we compared the responses of neurons in the rostral ventrolateral medulla (RVLM), a principal region of the brain stem involved in the regulation of blood pressure, to whole body rotations of conscious and decerebrate cats. In both preparations, RVLM neurons exhibited similar levels of spontaneous activity (median of ~17 spikes/s). The firing of about half of the RVLM neurons recorded in decerebrate cats was modulated by rotations; these cells were activated by vertical tilts in a variety of directions, with response characteristics suggesting that their labyrinthine inputs originated in otolith organs. The activity of over one-third of RVLM neurons in decerebrate animals was altered by stimulation of baroreceptors; RVLM units with and without baroreceptor signals had similar responses to rotations. In contrast, only 6% of RVLM neurons studied in conscious cats exhibited cardiac-related activity, and the firing of just 1% of the cells was modulated by rotations. These data suggest that the brain stem circuitry mediating vestibulosympathetic reflexes is highly sensitive to changes in body position in space but that the responses to vestibular stimuli of neurons in the pathway are suppressed by higher brain centers in conscious animals. The findings also raise the possibility that autonomic responses to a variety of inputs, including those from the inner ear, could be gated according to behavioral context and attenuated when they are not necessary.  相似文献   

19.
Alheid  G. F.  Gray  P. A.  Jiang  M. C.  Feldman  J. L.  McCrimmon  D. R. 《Brain Cell Biology》2002,31(8-9):693-717
A column of parvalbumin immunoreactive neurons is closely associated with the location of respiratory neurons in the ventrolateral medulla of the rat. The majority (66%) of bulbospinal neurons in the medullary ventral respiratory column (VRC) that were retrogradely labeled by tracer injections in the phrenic nucleus were also positive for parvalbumin. In contrast, only 18.8% of VRC neurons retrogradely labeled after a tracer injection in the VRC, also expressed parvalbumin. The average cross-sectional area of VRC neurons retrogradely labeled after VRC injections was 193.8 μm2 ± 6.6 SE. These were significantly smaller than VRC parvalbumin neurons (271.9 μm2 ± 12.3 SE). Parvalbumin neurons were found in the Bötzinger Complex, the rostral ventral respiratory group (VRG), and the caudal VRG, areas which all contribute to the bulbospinal projection. In contrast, parvalbumin neurons were sparse or absent in the preBötzinger Complex and in the vicinity of the retrotrapezoid nucleus, areas that have few bulbospinal projections. Parvalbumin was rarely colocalized within Neurokinin-1 receptor positive (NK1R) VRC neurons, which are found in the preBötzinger complex and in the anteroventral part of the rostral VRG. Parvalbumin neurons in the Bötzinger Complex and rostral VRG help define the rostrocaudal extent of these regions. The absence of parvalbumin neurons from the intervening preBötzinger complex also helps establish the boundaries of this region. Regional boundaries described in this manner are in good agreement with earlier physiological and anatomical studies. Taken together, the distributions of parvalbumin, NK1R and bulbospinal neurons suggest that the rostral VRG may be subdivided into distinct, anterodorsal, anteroventral, and posterior subdivisions.  相似文献   

20.
The present study sought to determine whether water deprivation increases Fos immunoreactivity, a neuronal marker related to synaptic activation, in sympathetic-regulatory neurons of the hypothalamic paraventricular nucleus (PVN). Fluorogold (4%, 50 nl) and cholera toxin subunit B (0.25%, 20-30 nl) were microinjected into the spinal cord (T1-T3) and rostral ventrolateral medulla (RVLM), respectively. Rats were then deprived of water but not food for 48 h. Water deprivation significantly increased the number of Fos-positive nuclei throughout the dorsal, ventrolateral, and lateral parvocellular divisions of the PVN (water deprived, 215 +/- 23 cells; control, 45 +/- 7 cells, P < 0.01). Moreover, a significantly greater number of Fos-positive nuclei were localized in spinally projecting (11 +/- 3 vs. 2 +/- 1 cells, P < 0.025) and RVLM-projecting (45 +/- 7 vs. 7 +/- 1 cells, P < 0.025) neurons of the PVN in water-deprived vs. control rats, respectively. The majority of these double-labeled neurons was found in the ventrolateral and lateral parvocellular divisions of the ipsilateral PVN. Interestingly, a significantly greater percentage of RVLM-projecting PVN neurons were Fos positive compared with spinally projecting PVN neurons in the ventrolateral (25.8 +/- 0.7 vs. 8.0 +/- 1.5%, respectively, P < 0.01) and lateral (23.4 +/- 2.1 vs. 5.0 +/- 0.9%, respectively, P > 0.01) parvocellular divisions. In addition, we analyzed spinally projecting neurons of the RVLM and found a significantly greater percentage were Fos positive in water-deprived rats than in control rats (26 +/- 3 vs. 3 +/- 1%, respectively; P < 0.001). Collectively, the present findings indicate that water deprivation evokes a distinct cellular response in sympathetic-regulatory neurons of the PVN and RVLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号