首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dexamethasone inhibited the basal and EGF-stimulated DNA synthesis of adult rat hepatocytes in primary culture. The inhibition was glucocorticoid-specific: It was shown by dexamethasone and hydrocortisone, but not by progesterone, testosterone, or estradiol; and was counteracted by the glucocorticoid antagonist RU-38486 in a concentration-dependent manner. Dexamethasone acted by decreasing the rate of entry into S-phase (kG1/S), while cell cycle parameters were unaffected. The steroid was able to decrease the kG1/S severalfold even when added more than 20 hr after EGF, half-maximal effect occurring 11 hr after the addition of dexamethasone. Densely populated areas were much more sensitive to the inhibition by dexamethasone than sparsely populated areas within the same culture dish: A moderate (10 nM) concentration of dexamethasone nearly abolished the DNA synthesis in densely populated areas of hepatocyte cultures with only marginal effect on sparsely populated cells.  相似文献   

2.
A study was made of the influence of gamma-radiation on DNA synthesis in cells of 3-day and 7-day Ehrlich ascites tumor cultures. DNA synthesis in cells of the 3-day culture was more sensitive to moderate radiation doses than those of the 7-day culture as was observed during the first 30 min after irradiation. After 3-hour postirradiation incubation, no appreciable difference was noted in radiosensitivity of DNA synthesis in the cells of the 3-day and 7-day cultures.  相似文献   

3.
The ability of specific synthetic polyelectrolytes to act as mitogens for quiescent normal human fibroblasts in cultures is described. Of several acidic polymers tested, polyinosinic acid .polycytidylic acid (poly I.poly C) and dextran sulfate were the most effective in stimulating 3H]thymidine incorporation (2-to 10-fold). The concentration for a half-maximal effect (ED50) was 0.4 microgram/ml (0.8 nM) for poly I.poly C, and 1.7 microgram/ml (3.4 nM) for dextran sulfate. Single-stranded polyinosinic acid or polycytidylic acid had no effect. The time course of stimulation of DNA synthesis by these acidic polymers was similar to that for naturally occurring mitogens such as epidermal growth factor, beginning at about 18 hours and reaching a maximum rate 26 to 30 hours after the addition of polymer. Glucocorticoids that have an 11-beta hydroxyl group (e.g., dexamethasone) had no effect on DNA synthesis alone, but enhanced several-fold the mitogenic activity of poly I.poly C or dextran sulfate; the ED50 for dexamethasone was 0.75 ng/ml (1.9 nM). Glucocorticoids with an 11-keto group were inactive in this respect. The labeling index following treatment of cultures with poly I.poly C and dexamethasone was 14%, compared with a labeling index of 25% following stimulation by fetal calf serum. The extent of stimulation of DNA synthesis by poly I.poly C and dexamethasone was comparable to that induced by epidermal growth factor. It appears that both the poly I.poly C and dexamethasone are required for only a short period of time (approximately 3 hours) in order to produce maximal stimulation of DNA synthesis 30 hours later.  相似文献   

4.
Liver cells isolated from the adult rat livers under mild conditions were preincubated for 1 day with Williams medium E (WE) containing serum, dexamethasone and insulin, and then the cells (monolayered) were incubated for 2-3 days with WE (1 ml) containing only insulin to measure DNA synthesis and/or mitosis. DNA synthesis of cultured liver cells was dependent on cell densities within a region from 0.1 X 10(6) to 1.0 X 10(6) nuclei/dish (Falcon, diameter 35 mm). The addition of EGF from the beginning of preincubation stimulated DNA synthesis (or replication) as well as cell proliferation in vitro, but the density-dependent inhibition of DNA synthesis was observed similarly in the presence of EGF. In contrast to the low and high density cultures, DNA synthesis in the intermediary density cultures was enhanced by enlarging the medium volume or by adding ornithine (arginase inhibitor). DNA synthesis in low density cultures was inhibited by liver plasma membranes in a concentration-dependent fashion. The inhibition of DNA synthesis by liver plasma membranes in low concentrations (less than 30 micrograms protein/ml) was reduced by adding either extra arginine or ornithine. DNA synthesis of cultured liver cells (low density) was inhibited by replacing arginine in WE with equimolar ornithine and urea or by adding a commercial arginase (bovine liver). These, together with earlier findings indicating the presence of arginase in liver plasma membranes (outer leaflet), seem to support the idea that arginase may be involved in density-dependent as well as plasma membrane-mediated inhibition of DNA synthesis of cultured liver cells. However, this does not exclude possible involvement of other inhibitory principle(s), such as direct cell-to-cell or cell-to-plasma membrane interactions, especially in higher cell densities or larger plasma membrane concentrations.  相似文献   

5.
Welker, N. E. (University of Illinois, Urbana), and L. Leon Campbell. Biochemical changes in lysogenic Bacillus stearothermophilus after bacteriophage induction. J. Bacteriol. 90:1129-1137. 1965.-Cultures of Bacillus stearothermophilus 1503-4R (TP-1) continued to grow at an unaltered rate after induction with mitomycin C (MC). MC-induced cultures exhibited a 2.5-fold increase in cell number before lysis occurred. Prior to lysis, cells were observed to elongate and to contain areas of lesser density. Protein synthesis was slightly inhibited in MC- or ultraviolet light (UV)-induced cultures for a period of 5 to 10 min, and then proceeded at a rate identical to that in the noninduced culture. Ribonucleic acid (RNA) synthesis was not affected by MC induction. UV induction caused RNA synthesis to occur in two stages: in the first stage, the rate of RNA synthesis was one-third that observed in the noninduced culture and lasted for a period of 15 min; the second stage of RNA synthesis then proceeded at a rate identical to that in the noninduced culture. The synthesis of deoxyribonucleic acid (DNA) in an MC- or UV-induced culture occurred in two stages. In the first stage, DNA synthesis in induced cultures occurred at a rate of one-half (MC) and one-third (UV) of that observed in the noninduced culture. The first stage of DNA synthesis in MC- or UV-induced cultures lasted for 25 to 30 min and 15 to 20 min, respectively. In the second stage, the rate of DNA synthesis in MC- or UV-induced cultures occurred at a rate three times that of the noninduced culture. UV induction appeared to have a greater inhibitory effect than MC induction on protein, RNA, and DNA synthesis as well as phage yield. The differential rate (K) of inducible and constitutive alpha-amylase synthesis was inhibited by 75 and 100%, respectively, for a period of 20 min after MC induction. After 20 min, the K values for alpha-amylase synthesis were identical to those obtained in the absence of MC induction. The synthesis of TP-1 phage DNA occurred rapidly and was complete 25 min after MC induction, whereas bacterial DNA was degraded or its rate of synthesis was decreased. During the second stage of DNA synthesis, only bacterial DNA was synthesized, but at a rate greater than that found in the noninduced culture.  相似文献   

6.
The rate of DNA synthesis in cultures of chick embryo cells is proportional to the concentration of serum added. The concentration of serum required to stimulate DNA synthesis increases with cell population density and with the duration of culture after trypsinization. The increase of the serum requirement with population density is not caused by the depletion of serum constituents. The requirement of cells for external zinc in DNA synthesis also increases with population density and duration of culture. The kinetics of inhibition of DNA synthesis by deprivation of serum or zinc are similar. Serum deprivation, however, inhibits 2-deoxyglucose uptake and cell movement, but zinc deprivation does not. The deprivation of either serum or zinc inhibits RNA synthesis about twofold. Very low concentrations of actinomycin D prevent the resumption of RNA and DNA synthesis upon restoration of serum or zinc to deprived cultures.  相似文献   

7.
Elevated levels of glucocorticoids caused by disease (Cushing's syndrome) or therapeutic treatment of asthma are known to cause osteoporosis. Space flight, an environmental condition, is known to cause a rise in endogenous cortisols accompanied by a significant loss of bone and calcium. Long-term space inhabitants have lost up to 18% of weight bearing bone during long-term flight. This study demonstrates that elevated concentrations of glucocorticoids lower the endogenous production of PGE2 and interfere with osteoblast proliferation. Osteoblasts grown with dexamethasone had significantly lower DNA synthesis and endogenous synthesis of PGE2. Addition of exogenous dmPGE2 to the dexamethasone growth-inhibited cells stimulated DNA synthesis over twofold. In synchronous control cultures, we found that endogenous prostaglandin synthesis increased in late G1, preceding S-phase DNA synthesis by several hours. The addition of exogenous dexamethasone to synchronous cultures resulted in a significant decrease in the prostaglandin synthesis followed by a significant decrease in DNA synthesis in parallel cultures. Further, dexamethasone caused the actin cytoskeleton to collapse and the cell morphology to become rounded and spindle shaped. Addition of exogenous PGE2 to the dexamethasone-treated osteoblasts caused recovery of the actin architecture and phenotype. These data support the hypothesis that the glucocorticoid-mediated decrease in prostaglandin synthesis may be a contributing factor in the reduced bone quality and trabecular bone formation seen in glucocorticoid-induced osteoporosis.  相似文献   

8.
Exposure of H-4-IIE-C3 rat hepatoma cell cultures to the synthetic glucocorticoid, dexamethasone, results in an inhibition of cellular proliferation which is not the result of steroid-induced cytolysis. A significant decrease in both the rate of DNA synthesis and DNA content precedes a detectable effect on cell number. Continuous culture of H-IIE-C3 cells in medium containing 10(-5) M dexamethasone results in the selection of a steroid-resistant cell population that has the growth characteristics of unselected sensitive cultures and shows normal steroid induction of tryosine transaminase. Selection is a slow process requiring 24 to 36 months to obtain a phenotypically stable resistant cell line, and can be subdivided into three phases--a sensitive phase, adaptation and resistance. A comparison of the karyotypes of unselected and resistant cultures shows that the selection process enriches for a dexamethasone-resistant subpopulation.  相似文献   

9.
Hepatocyte growth factor (HGF), a mesenchymal-derived factor which regulates growth, motility, and morphogenesis of epithelial and endothelial cells, functions as a hepatotrophic and renotrophic factor for regeneration of the liver and kidney. We have now obtained evidence that transforming growth factor-beta 1 (TGF-beta 1) and glucocorticoids are negative regulators for HGF gene expression. When TGF-beta 1 or dexamethasone was added to cultures of MRC-5 human embryonic lung fibroblasts and HL-60 human promyelocytic leukemic cells, the amount of HGF secreted into the culture medium was inhibited to 30-40% of that of control cultures by 10 ng/ml TGF-beta 1 and to 40-50% by 10(-6) M dexamethasone. The inhibitory effect of TGF-beta 1 and dexamethasone on HGF synthesis in MRC-5 cells was additive, thereby suggesting that TGF-beta 1 and dexamethasone exert effects through distinct mechanisms. Hydrocortisone also inhibited HGF synthesis with the same potency as dexamethasone; however, testosterone, estriol, and beta-estradiol had no effect. The rate of HGF synthesis in MRC-5 cells, as measured by pulse labeling with [35S]methionine and subsequent immunoprecipitation, was suppressed to 30-40% of the control with 10 ng/ml TGF-beta 1, and to 30-45% by 10(-6) M dexamethasone. HGF mRNA levels in MRC-5 cells and HL-60 cells were dose-dependently suppressed by TGF-beta 1 and dexamethasone; 10 ng/ml TGF-beta 1 suppressed HGF mRNA levels to 32% and 35% of control culture, respectively, in MRC-5 cells and HL-60 cells, and 10(-6) M dexamethasone suppressed to 43% and 38%, respectively. Thus, TGF-beta 1 and glucocorticoids seem to inhibit HGF synthesis by suppressing the expression of the HGF gene. We propose that a negative regulation of HGF gene expression by TGF-beta 1 or glucocorticoids may be involved in physiological or pathological processes during tissue regeneration.  相似文献   

10.
11.
Upon epidermal growth factor (EGF) stimulation, fetal (20 days of gestation) and regenerating (44-48 h after partial hepatectomy) rat hepatocytes, isolated and cultured under identical conditions, increased DNA synthesis and entered into S-phase and mitosis, measured as [3H]thymidine incorporation and DNA content per nucleus in a flow cytometer, respectively. Fetal hepatocytes consisted of a homogeneous population of diploid (2C) cells. Two different populations of cells were present in regenerating liver, diploid (2C) and tetraploid (4C) cells, that responded to EGF. Glucagon or norepinephrine did not affect EGF stimulation of DNA synthesis in fetal liver cells, but they potentiated EGF response in regenerating hepatocyte cultures. Glucocorticoid hormones (dexamethasone) inhibited DNA synthesis in fetal hepatocyte cultures, an effect potentiated by the presence of glucagon or norepinephrine. In contrast, in regenerating hepatocytes, dexamethasone increased EGF-induced proliferation. EGF-dependent DNA synthesis was inhibited by TGF-beta in both fetal and regenerating cultured hepatocytes. TGF-beta action was partially suppressed by norepinephrine in regenerating hepatocytes, but was without effect in fetal hepatocyte cultures, whereas a synergistic action between TGF-beta and dexamethasone inhibiting growth in fetal but not in regenerating hepatocytes was found. Taken together, these results may suggest that there are significant differences between fetal and regenerating hepatocyte growth in their response to various hormones.  相似文献   

12.
Mouse neuroblastoma cells containing intracisternal type A particles were treated with iododeoxyuridine and dexamethasone to induce the release of type C oncornavirus particles. For 5 days after treatment, antigenic markers and DNA polymerase activities specific to particles of each of the two types were assayed in the cells and in pellets obtained by high-speed centrifugation of the culture fluid. There was a marked release of C-particle antigen (p30) and DNA polymerase activity in extracellular particulate form, reaching a maximum on day 3 after treatment and falling thereafter. In contrast, no extracellular A-particle antigen was detected, and A-particle-specific DNA polymerase activity in the medium pellets did not increase from the original very low level. Electron microscopy confirmed the presence of free type C virus particles, but not intracisternal type A particles, in the culture fluid. Although intracellular levels of C-particle antigen rose 20- to 30-fold per milligram of cell protein, intracellular A-particle antigen and DNA polymerase activity did not vary more than two-fold. The relative rate of A-particle synthesis in the treated cells, as judged by incorporation of radioactive amino acids into the major structural protein (P73), was also unchanged over the period of observation. Thus, the induction of type C virus particle formation in cultured neuroblastoma cells had no detectable effect on the quantity, synthesis rate, or location of intracisternal type A particles.  相似文献   

13.
Glucagon and dibutyryl cyclic AMP exerted both stimulatory and inhibitory effects on hepatocyte DNA synthesis when added to primary monolayer cultures in the presence of serum, dexamethasone, insulin and epidermal growth factor. The stimulation occurred at low concentrations of glucagon (1 pM-1 nM) or dibutyryl cyclic AMP (1 nM-1 microM), while the agents inhibited DNA synthesis at higher concentrations (usually glucagon at over 10 nM or dibutyryl cyclic AMP at over 10 microM). The stimulatory effect was stronger at low cell densities (less than 20 X 10(3) hepatocytes/cm2). When the hepatocytes were cultured at higher densities, stimulatory effects were reduced or absent and the inhibition of (hormone-induced) DNA synthesis by a high concentration of glucagon was much more pronounced than at low cell densities. These results indicate dual, bidirectional, effects of cyclic AMP on hepatocyte DNA synthesis.  相似文献   

14.
When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.  相似文献   

15.
Density-dependent growth control of adult rat hepatocytes in primary culture   总被引:11,自引:0,他引:11  
Adult rat hepatocytes in primary culture, which show various liver functions, did not show any mitosis at confluent cell density, although they entered the S phase and remained in the G2 phase, judging by cytofluorometry, when insulin and epidermal growth factor (EGF) were added to 2-day cultures (Tomita, Y., Nakamura, T., & Ichihara, A. (1981) Exp. Cell Res. 135, 363-371). However, when the cell density was decreased by half or one third, the number of nuclei and cell number increased to 1.5-2.0 times that after culture for 35 h with insulin and EGF. Moreover, at these lower densities, DNA synthesis started much earlier, although at the usual high density DNA synthesis with these two hormones did not start until the hepatocytes had been cultured for over 40 h. These results suggest that proliferation of mature rat hepatocytes is regulated by the cell density. First, cells in G0 enter the G1 phase density-dependently; then cells in the G1 phase seem to be stimulated to enter the S phase by insulin and EGF, and a low cell density may permit cells after DNA synthesis to enter the M phase. DNA synthesis of rat hepatocyte cultures at low cell density was strongly inhibited by co-culture with a dense culture. Therefore, the density-dependent mechanism of hepatocyte proliferation seems to involve regulation by a soluble inhibitor(s) secreted by the hepatocytes into the culture medium.  相似文献   

16.
The effect of a Fibroblast Growth Factor (FGF) on the initiation of DNA synthesis in sparse populations of BALB/c 3T3 cells maintained quiescent in the presence of various serum concentrations has been investigated. The initiation of DNA synthesis, as measured by 3H-thymidine incorporation, is greatest in cultures maintained quiescent in the presence of 0.8% serum. Under these conditions, the cells are on the border between quiescence and growth. The minimal effective dose of FGF needed to increase DNA synthesis is 0.01 ng/ml and plateau values are obtained between 2.5 and 5 ng/ml. At plateau concentrations, FGF is 65% as effective as saturating concentrations of serum in the stimulation of DNA synthesis. When dexamethasone and insulin are present, FGF was 82% as effective. In contrast, cultures maintained in the presence of lower serum concentrations (0.2% and 0.4%) are much less responsive to the FGF. This can be attributed to the lack of supplemental factors which make the cells maximally responsive to growth stimulation and to degenerative changes that take place in the cells. Insulin and the glucocorticoid, dexamethasone, potentiated the response to FGF and delayed the degeneration of cells maintained in low serum.  相似文献   

17.
D L Fine  L O Arthur  L J Young 《In vitro》1976,12(10):693-701
Several cell culture factors were found to influence in vitro expression of mouse mammary tumor virus (MMTV) in the mouse adenocarcinoma cell line Mm5mt/c1. Cells were propagated in a variety of commercially available cell culture media to which dexamethasone (DXM) was added as a stimulator of MMTV production. Culture seeding density, culture medium type, and glucose concentration each influenced MMTV production when expressed on a per cell basis. Maximum cell growth occurred in cultures grown in RPMI-1640 medium containing insulin. Those media which provided good cell growth were not necessarily optimal for virus expression. Addition of insulin did not stimulate MMTV synthesis although dexamethasone alone was stimulatory in all media used; however, maximum MMTV expression was obtained when dexamethasone and insulin were used in concert. Equivalent levels of MMTV-specific cell membrane antigen, MMTV-specific protein, and virus particles were produced at incubation temperatures of 32 degrees, 34 degrees or 37 degrees C; however, higher levels of virus-related RNA-dependent DNA polymerase (RDDP) activity were recovered from cultures incubated at 32 degrees and 34 degrees C than at 37 degrees C. Decreased levels of RDDP were attributed to enzyme thermolability at 37 degrees C incubation.  相似文献   

18.
The relationships between replicative DNA synthesis and retinoic acid (RA)-induced differentiation of human promyelocytic leukaemic (HL-60) cells are evaluated with the use of Aphidicolin, a specific and reversible inhibitor of DNA polymerase alpha (alpha). Addition of a sublethal concentration of Aphidicolin (0.4 microM) in culture for 3 days suppresses DNA synthesis to a similar level of the resting stage (day 8) in control cultures. DNA synthesis is reactivated to the level observed in the growing stage of control cultures once Aphidicolin is removed after 3 days in culture. The level of DNA synthesis at the early stage of RA-induction (day 3) is suppressed by only 17% when compared to control cultures. The inhibitory effect of Aphidicolin on DNA synthesis in both control cultures and RA-induced cell cultures is similar. However, no reactivation of DNA synthesis is observed after removal of Aphidicolin on day 3 from RA-induced cell cultures. Flow cytometric analysis of DNA content on day 3 reveals that cells accumulate in G1 and early S phases of the cell cycle after exposure to Aphidicolin with or without RA. Of interest is the fact that, while Aphidicolin alone did not induce cells to differentiate, neither did it interfere with RA-induced cell differentiation (the rate of RA-induced cell differentiation in the presence of Aphidicolin is similar to that of RA-treated cultures in the absence of Aphidicolin). These results suggest that the combined use of Aphidicolin and RA may inhibit leukaemic cell proliferation more effectively without causing severe cytotoxicity and without interfering with RA-induced cell differentiation.  相似文献   

19.
Sex differences in amniotic fluid and lung lavage surfactant have been found. Although these studies suggest that augmented fetal surfactant synthesis occurs earlier in the female fetus, there is little direct evidence for a sex difference in fetal surfactant synthesis. We studied the synthesis of surfactant by evaluating the appearance of labelled phospholipids in lamellar bodies recovered from sex-specific organ culture of fetal rabbit lungs. Furthermore, we studied the ability of dexamethasone to stimulate surfactant synthesis in male and female fetal lungs. Organ culture was begun on day 21 of gestation. After 5 days the incorporation of [1,3-14C]glycerol into phosphatidylcholine (PC), disaturated phosphatidylcholine, phosphatidylinositol (PI), and phosphatidylglycerol was studied. Female lungs in organ culture synthesized more disaturated PC per milligram protein than male lungs. In the presence of dexamethasone (10(-8) M) and dihydrotestosterone (10(-8) M) an increased synthesis was noted in the female cultures of PC (270%), disaturated PC (234%), PI (281%), and phosphatidylglycerol (754%). No significant increase in the synthesis of PC or disaturated PC was observed in the male cultures. However in the male cultures smaller increases in the synthesis of PI (193%) and of phosphatidylglycerol (360%) were observed. Overall, dexamethasone stimulated synthesis in females but not in males such that significant differences in the synthesis of all phospholipids were found in the presence of 10(-8) M dexamethasone. These studies show that the synthesis of surfactant in the fetal lung is sexually dimorphic, as is the ability of dexamethasone to regulate synthesis. An understanding of the mechanism which causes these differences may provide important insight into the control of the developmental clock which regulates the orderly progression of development.  相似文献   

20.
The relationships between replicative DNA synthesis and retinoic acid (RA)-induced differentiation of human promyelocytic leukaemic (HL-60) cells are evaluated with the use of Aphidicolin, a specific and reversible inhibitor of DNA polymerase alpha (α). Addition of a sublethal concentration of Aphidicolin (0.4 μM) in culture for 3 days suppresses DNA synthesis to a similar level of the resting stage (day 8) in control cultures. DNA synthesis is reactivated to the level observed in the growing stage of control cultures once Aphidicolin is removed after 3 days in culture. the level of DNA synthesis at the early stage of RA-induction (day 3) is suppressed by only 17% when compared to control cultures. the inhibitory effect of Aphidicolin on DNA synthesis in both control cultures and RA-induced cell cultures is similar. However, no reactivation of DNA synthesis is observed after removal of Aphidicolin on day 3 from RA-induced cell cultures. Flow cytometric analysis of DNA content on day 3 reveals that cells accumulate in G1 and early S phases of the cell cycle after exposure to Aphidicolin with or without RA. of interest is the fact that, while Aphidicolin alone did not induce cells to differentiate, neither did it interfere with RA-induced cell differentiation (the rate of RA-induced cell differentiation in the presence of Aphidicolin is similar to that of RA-treated cultures in the absence of Aphidicolin). These results suggest that the combined use of Aphidicolin and RA may inhibit leukaemic cell proliferation more effectively without causing severe cytotoxicity and without interfering with RA-induced cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号