首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
During the last decade, it was established that the class III alcohol dehydrogenase (ADH3) enzyme, also known as glutathione-dependent formaldehyde dehydrogenase (FALDH; EC 1.2.1.1), catalyzes the NADH-dependent reduction of S-nitrosoglutathione (GSNO) and therefore was also designated as GSNO reductase. This finding has opened new aspects in the metabolism of nitric oxide (NO) and NO-derived molecules where GSNO is a key component. In this article, current knowledge of the involvement and potential function of this enzyme during plant development and under biotic/abiotic stress is briefly reviewed.Key words: nitric oxide, nitrosative stress, S-nitrosoglutathione reductase  相似文献   

3.
S-nitrosoglutathione reductase (GSNOR), or ADH5, is an enzyme in the alcohol dehydrogenase (ADH) family. It is unique when compared to other ADH enzymes in that primary short-chain alcohols are not its principle substrate. GSNOR metabolizes S-nitrosoglutathione (GSNO), S-hydroxymethylglutathione (the spontaneous adduct of formaldehyde and glutathione), and some alcohols. GSNOR modulates reactive nitric oxide (?NO) availability in the cell by catalyzing the breakdown of GSNO, and indirectly regulates S-nitrosothiols (RSNOs) through GSNO-mediated protein S-nitrosation. The dysregulation of GSNOR can significantly alter cellular homeostasis, leading to disease. GSNOR plays an important regulatory role in smooth muscle relaxation, immune function, inflammation, neuronal development and cancer progression, among many other processes. In recent years, the therapeutic inhibition of GSNOR has been investigated to treat asthma, cystic fibrosis and interstitial lung disease (ILD). The direct action of ?NO on cellular pathways, as well as the important regulatory role of protein S-nitrosation, is closely tied to GSNOR regulation and defines this enzyme as an important therapeutic target.  相似文献   

4.
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO→NO3→NO2→NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O2, NO2, and NO3 in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3, which was relieved upon O2 depletion. As cell growth depleted dissolved O2 levels, NO3 was converted to NO2 at near-stoichiometric levels, whereas NO2 consumption did not coincide with NO or NO3 accumulation. Assimilatory NO2 reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with ΔnirB, ΔnirS, and ΔnorC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.  相似文献   

5.
The oligoadenylate synthetase (OAS) enzymes are cytoplasmic dsRNA sensors belonging to the antiviral innate immune system. Upon binding to viral dsRNA, the OAS enzymes synthesize 2′-5′ linked oligoadenylates (2-5As) that initiate an RNA decay pathway to impair viral replication. The human OAS-like (OASL) protein, however, does not harbor the catalytic activity required for synthesizing 2-5As and differs from the other human OAS family members by having two C-terminal ubiquitin-like domains. In spite of its lack of enzymatic activity, human OASL possesses antiviral activity. It was recently demonstrated that the ubiquitin-like domains of OASL could substitute for K63-linked poly-ubiquitin and interact with the CARDs of RIG-I and thereby enhance RIG-I signaling. However, the role of the OAS-like domain of OASL remains unclear. Here we present the crystal structure of the OAS-like domain, which shows a striking similarity with activated OAS1. Furthermore, the structure of the OAS-like domain shows that OASL has a dsRNA binding groove. We demonstrate that the OAS-like domain can bind dsRNA and that mutating key residues in the dsRNA binding site is detrimental to the RIG-I signaling enhancement. Hence, binding to dsRNA is an important feature of OASL that is required for enhancing RIG-I signaling.  相似文献   

6.
We investigated the functional and biochemical variability of Kunitz trypsin inhibitor (KTI) genes of Populus trichocarpa x Populus deltoides. Phylogenetic analysis, expressed sequence tag databases, and western-blot analysis confirmed that these genes belong to a large and diverse gene family with complex expression patterns. Five wound- and herbivore-induced genes representing the diversity of the KTI gene family were selected for functional analysis and shown to produce active KTI proteins in Escherichia coli. These recombinant KTI proteins were all biochemically distinct and showed clear differences in efficacy against trypsin-, chymotrypsin-, and elastase-type proteases, suggesting functional specialization of different members of this gene family. The in vitro stability of the KTIs in the presence of reducing agents and elevated temperature also varied widely, emphasizing the biochemical differences of these proteins. Significantly, the properties of the recombinant KTI proteins were not predictable from primary amino acid sequence data. Proteases in midgut extracts of Malacosoma disstria, a lepidopteran pest of Populus, were strongly inhibited by at least two of the KTI gene products. This study suggests that the large diversity in the poplar (Populus spp.) KTI family is important for biochemical and functional specialization, which may be important in the maintenance of pest resistance in long-lived plants such as poplar.  相似文献   

7.
Gene sequence analysis of cnorB and qnorB, both encoding nitric oxide reductases, was performed on pure cultures of denitrifiers, for which previously nir genes were analysed. Only 30% of the 227 denitrifying strains rendered a norB amplicon. The cnorB gene was dominant in Alphaproteobacteria, and dominantly coexisted with the nirK gene, coding for the copper-containing nitrite reductase. Both norB genes were equally present in Betaproteobacteria but no linked distributional pattern of nir and norB genes could be observed. The overall cnorB phylogeny was not congruent with the widely accepted organism phylogeny based on 16S rRNA gene sequence analysis, with strains from different bacterial classes having identical cnorB sequences. Denitrifiers and non-denitrifiers could be distinguished through qnorB gene phylogeny, without further grouping at a higher taxonomic resolution. Comparison of nir and norB phylogeny revealed that genetic linkage of both genes is not widespread among denitrifiers. Thus, independent evolution of the genes for both nitrogen oxide reductases does also occur.  相似文献   

8.
9.
Ammonia-oxidizing bacteria are believed to be an important source of the climatically important trace gas nitrous oxide (N(2)O). The genes for nitrite reductase (nirK) and nitric oxide reductase (norB), putatively responsible for nitrous oxide production, have been identified in several ammonia-oxidizing bacteria, but not in Nitrosospira strains that may dominate ammonia-oxidizing communities in soil. In this study, sequences from nirK and norB genes were detected in several cultured Nitrosospira species and the diversity and phylogeny of these genes were compared with those in other ammoniaoxidizing bacteria and in classical denitrifiers. The nirK and norB gene sequences obtained from Nitrosospira spp. were diverse and appeared to be less conserved than 16S rRNA genes and functional ammonia monooxygenase (amoA) genes. The nirK and norB genes from some Nitrosospira spp. were not phylogenetically distinct from those of denitrifiers, and phylogenetic analysis suggests that the nirK and norB genes in ammonia-oxidizing bacteria have been subject to lateral transfer.  相似文献   

10.
Staphylococcus aureus nitrosative stress resistance is due in part to flavohemoprotein (Hmp). Although hmp is present in all sequenced S. aureus genomes, 37% of analyzed strains also contain nor, encoding a predicted quinol‐type nitric oxide (NO) reductase (saNOR). DAF‐FM staining of NO‐challenged wild‐type, nor, hmp and nor hmp mutant biofilms suggested that Hmp may have a greater contribution to intracellular NO detoxification relative to saNOR. However, saNOR still had a significant impact on intracellular NO levels and complemented NO detoxification in a nor hmp mutant. When grown as NO‐challenged static (low‐oxygen) cultures, hmp and nor hmp mutants both experienced a delay in growth initiation, whereas the nor mutant's ability to initiate growth was comparable with the wild‐type strain. However, saNOR contributed to cell respiration in this assay once growth had resumed, as determined by membrane potential and respiratory activity assays. Expression of nor was upregulated during low‐oxygen growth and dependent on SrrAB, a two‐component system that regulates expression of respiration and nitrosative stress resistance genes. High‐level nor promoter activity was also detectable in a cell subpopulation near the biofilm substratum. These results suggest that saNOR contributes to NO‐dependent respiration during nitrosative stress, possibly conferring an advantage to nor+ strains in vivo.  相似文献   

11.
Due to their extraordinary capacity to hypertolerate and hyperaccumulate heavy metals in above‐ground tissues, hyperaccumulator plant species have gained wide attention from researchers seeking biotechnologies to manage environmental heavy metal pollution. However, the molecular basis of hyperaccumulation is still far from being fully understood. Here, we used iTRAQ to perform a quantitative proteomics study of the leaves of Sedum alfredii (Crassulaceae) from hyperaccumulating population (HP) and non‐hyperaccumulating population (NHP). A total of 248 proteins had constitutively higher levels in HP leaves than in NHP leaves. Cadmium (Cd) treatment led to the induction of 13 proteins in HP leaves and 33 proteins in NHP leaves. Two proteins were induced by Cd in both HP leaves and NHP leaves. The annotations for many of the proteins that were higher in HP leaves and proteins that were induced by Cd treatments were associated with vacuolar sequestration, cell wall/membrane modification, and plant defense. In addition to establishing a global empirical foundation for the study of proteins in S. alfredii, our findings relating to the differential constitutive and inducible expression of proteins open potential new research avenues and bolster previously reported suppositions about Cd hyperaccumulation in hyperaccumulator plants.  相似文献   

12.
13.
14.
The cytosol fraction of rat adrenocortical tissue contains comparatively high levels of two prostaglandin metabolizing enzymes. The first, prostaglandin-9-ketoreductase, utilizes NADPH more effectively than NADH as cofactor, is inhibited by NADP, and exhibits an apparent Km of 304 μM for PGE1. 15-hydroxyprostaglandin dehydrogenase, tentatively identified as the type II NADP-dependent isozyme, is inhibited by NADPH but not NADH, and exhibits an apparent Km of 157 μM when PGE1 is used as substrate. Changes in specific activities of the two enzymes following ACTH, hypophysectomy, or dexamethasone treatment are inconclusive in defining a chronic regulatory role for adrenocorticotropin.  相似文献   

15.
The hybrid cluster protein, Hcp, contains a 4Fe‐2S‐2O iron‐sulfur‐oxygen cluster that is currently considered to be unique in biology. It protects various bacteria from nitrosative stress, but the mechanism is unknown. We demonstrate that the Escherichia coli Hcp is a high affinity nitric oxide (NO) reductase that is the major enzyme for reducing NO stoichiometrically to N2O under physiologically relevant conditions. Deletion of hcp results in extreme sensitivity to NO during anaerobic growth and inactivation of the iron‐sulfur proteins, aconitase and fumarase, by accumulated cytoplasmic NO. Site directed mutagenesis revealed an essential role in NO reduction for the conserved glutamate 492 that coordinates the hybrid cluster. The second gene of the hcp‐hcr operon encodes an NADH‐dependent reductase, Hcr. Tight interaction between Hcp and Hcr was demonstrated. Although Hcp and Hcr purified individually were inactive or when recombined, a co‐purified preparation reduced NO in vitro with a Km for NO of 500 nM. In an hcr mutant, Hcp is reversibly inactivated by NO concentrations above 200 nM, indicating that Hcr protects Hcp from nitrosylation by its substrate, NO.  相似文献   

16.
17.
《Life sciences》1994,54(11):PL185-PL190
The performance of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide for the monitoring agent of nitric oxide was investigated. The agent (125–500 μM) was mixed with equal volume of nitric oxide solution, and aliquots of the mixture were applied to ESR spectroscopy. ESR spectra of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl, a product of the agent reacted with nitric oxide, were observed. A linear relationship was observed between the amplitude of the signal and concentrations of nitric oxide up to 80 μM. Endothelial cells cultured on microcarries were packed in a column, perfused with Krebs solutions and the effluent was mixed to the agent. The same ESR spectra were obtained and amplitude of the signal was increased by bradykinin (3–300nM), decreased by preincubation of NG-monomethyl-L-arginine (3–100 μM) and reversed by following incubation of L-arginine (100 μM).  相似文献   

18.
The present work reports on the biological activity of alfalfa (Medicago sativa) saponins on white poplar (Populus alba, cultivar ‘Villafranca’) cell suspension cultures. The extracts from alfalfa roots, aerial parts and seeds were characterized for their saponin content by means of thin layer chromatography (TLC) and electrospray ionisation coupled to mass spectrometry. The quantitative saponin composition from the different plant extracts was determined considering the aglycone moieties and determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) analyses. Only soyasapogenin I was detected in the seed extract while several other saponins were found in the root and leaf extracts. Actively proliferating white poplar cell cultures were challenged with the different saponin extracts. Only alfalfa root saponins, at 50 µg ml?1, induced significant cell death rates (75.00 ± 4.90%). Different cell subpopulations with peculiar cell death morphologies were observed and the programmed cell death (PCD)/necrosis ratio was reduced at increasing saponin concentrations. Enhancement of nitric oxide (NO) production was observed in white poplar cells treated with root saponins (RSs) at 50 µg ml?1 and release of reactive oxygen species (ROS) in the culture medium was also demonstrated. Saponin‐induced NO production was sensitive to sodium azide and NG‐monomethyl‐l ‐arginine, two specific inhibitors of distinct pathways for NO biosynthesis in plant cells.  相似文献   

19.
NO (nitric oxide) production from sunflower plants (Helianthus annuus L.), detached spinach leaves (Spinacia oleracea L.), desalted spinach leaf extracts or commercial maize (Zea mays L.) leaf nitrate reductase (NR, EC 1.6.6.1) was continuously followed as NO emission into the gas phase by chemiluminescence detection, and its response to post-translational NR modulation was examined in vitro and in vivo. NR (purified or in crude extracts) in vitro produced NO at saturating NADH and nitrite concentrations at about 1% of its nitrate reduction capacity. The K(m) for nitrite was relatively high (100 microM) compared to nitrite concentrations in illuminated leaves (10 microM). NO production was competitively inhibited by physiological nitrate concentrations (K(i)=50 microM). Importantly, inactivation of NR in crude extracts by protein phosphorylation with MgATP in the presence of a protein phosphatase inhibitor also inhibited NO production. Nitrate-fertilized plants or leaves emitted NO into purified air. The NO emission was lower in the dark than in the light, but was generally only a small fraction of the total NR activity in the tissue (about 0.01-0.1%). In order to check for a modulation of NO production in vivo, NR was artificially activated by treatments such as anoxia, feeding uncouplers or AICAR (a cell permeant 5'-AMP analogue). Under all these conditions, leaves were accumulating nitrite to concentrations exceeding those in normal illuminated leaves up to 100-fold, and NO production was drastically increased especially in the dark. NO production by leaf extracts or intact leaves was unaffected by nitric oxide synthase inhibitors. It is concluded that in non-elicited leaves NO is produced in variable quantities by NR depending on the total NR activity, the NR activation state and the cytosolic nitrite and nitrate concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号