首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stellate cells hitherto accounted exclusively in the innermost elastic-hyperplastic layer were already reported to inhabit human aortic intima. The present paper shows that most of these cells are situated just beneath the endothelium. Stellate cells also appear in the deendothelialization-induced myointimal thickening of rabbit aorta. In the myointimal thickening these cells were revealed in the direct proximity to the endothelium. A conclusion is available that the previously demonstrated polymorphism of human aortic intimal cells may be reproduced in a simple experimental model, which gives new possibilities for the study of the cellular polymorphism in the vessel wall.  相似文献   

2.
The dynamics of reparative regeneration of the rat abdominal aortic endothelium after cryodestruction was investigated in experiments on 27 rats. In the aortic bifurcation site as compared with its infrarenal region the marked differences in the reaction of blood cells with injured and repaired vascular wall, in increase of the proliferative activity of endothelial cells and heteromorphism of endothelial monolayer, accelerated growth of myointimal thickening are found. The mechanisms of local hemodynamic influence onto the velocity and pattern on endothelial restoration are under discussion.  相似文献   

3.
Following freeze-injury the arterial endothelium is able to restore completely its integrity without forming myointimal thickening. In the direction from the center of the former defect to its periphery the specific volume of biosynthetic and bioenergetic apparatus is reduced, specific volume of microvesicles rises, and parajunctional condensations of the microfilaments forms. Adhesion of monocytes to the endothelial surface is detected along with their migration into subendothelial space on all the stages of re-endothelialization.  相似文献   

4.
Segments of rat femoral arteries, with one collateral each, occluded between ligatures and dissected from surrounding tissue, developed intimal thickening, with or without ligation of their collaterals. Numerous newly-formed capillaries from the surrounding arterial microcirculation growing into the adventitia, tunica media and intimal thickening were demonstrated by means of serial longitudinal sections, predominantly in the ostium of the collateral. When the ligatures were applied without damaging the microcirculation surrounding the artery and the normal continuity of the adventitial vessels was unchanged, earlier presence of intimal thickening was observed. When the fibrous layers of the adventitia were removed at the moment of the arterial ligation, the continuity between newly-formed vessels of the neoadventitia and those growing into the media and neointima was much more evident. It was then noted that the pericytes constituted a major component of the intimal thickening. The introduction of contrast material in microcirculation confirmed the connections between newly-formed adventitial and intimal vessels. At the beginning of the experiment, autoradiographic studies showed an increased DNA synthesis in the cells of preformed postcapillary venules and capillaries of surrounding arterial microcirculation and later in those of the newly-formed vessels growing into the arterial wall. These results indicate that newly-formed capillaries derived from surrounding arterial microcirculation penetrate the wall of the occluded arterial segments and contribute to the intimal thickening formation. It is likely that the pericytes and endothelial cells (EC) of these ingrowing vessels are sources of myointimal cells at the intimal thickening and of endothelium at the luminal surface, respectively.  相似文献   

5.
BACKGROUND: Nitric oxide (NO) has been shown to decrease myointimal hyperplasia in injured blood vessels. We hypothesize inducible No synthase (iNOS) gene transfer even at low efficiency will provide adequate local no production to achieve this goal. MATERIALS AND METHODS: A retroviral vector containing the human iNOS cDNA (DFGiNOS) was used to transfer the iNOS gene into vascular cells and isolated blood vessels to answer the following questions: can vascular endothelial and smooth muscle cells support iNOS activity and will low efficiency iNOS gene transfer suppress myointimal hyperplasia in injured porcine arteries? RESULTS: DFGiNOS-infected sheep pulmonary artery endothelial cells (SPAEC) expressed significant iNOS mRNA and protein, releasing nitrite levels of 155.0 +/- 10.7 nmol/mg protein/24 h vs. 5.5 +/- 1.1 by control cells. Transduced rat smooth muscle cells (RSMC) also expressed abundant iNOS mRNA and protein, but, in contrast to SPAEC, NO synthesis was dependent on exogenous tetrahydrobiopterin (BH4) (291.8 +/- 10.4 nmol nitrite/mg protein/24 hr with BH4, 37.7 +/- 2.6 without BH4). Only porcine arteries infected with DFGiNOS following balloon injury exhibited a 3-fold increase in total NO synthesis and a 15-fold increase in cGMP levels over control vessels in a BH4 dependent fashion, despite only a 1% gene transfer efficiency. Transfer of iNOS completely prevented the 53% increase in myointimal thickness induced by balloon catheter injury; the administration of a NOS inhibitor reversed this effect. CONCLUSIONS: These in vitro findings suggest that vascular iNOS gene transfer may be feasible. Furthermore, a low gene transfer efficiency may be sufficient to inhibit myointimal hyperplasia following arterial balloon injury, although a source of BH4 may be required.  相似文献   

6.
Spleens from normal, healthy cats, dogs and rabbits were perfused with Ringer solution until only a few red cells remained. After fixation of the intact organ, small pieces of tissue were dried by a camphene method and examined under the scanning electron microscope. In all three species the red cells remaining in the spleen were either reticulocytes, spiculated cells, or cells of tear-drop shape and they were found adhering to macrophages and reticulum cells throughout the red pulp. Elongated masses were found on the sinusal surface of fenestrated endothelium (only in dog and rabbit); some of these appeared to be cells of tear-drop shape emerging from the cords into the sinus. This may perhaps denote a pitting process, as suggested by others, but it cannot be a unique function of fenestrated endothelium for red cells of similar shape were found elsewhere in the pulp. In all three species the network of reticulum fibres presents a very large contact surface area for blood cells and it seems likely that increased cell stickiness, rather than decreased deformability, leads to the trapping of immature red cells in the spleen.  相似文献   

7.
The influence of beta-blocker propranolol onto atherogenic properties of blood serum and to formation of myointimal thickening in rabbit aorta, which was caused by denudation, were investigated. The preparation was introduced per os in the dose 6 mg/kg. Culture of mouse peritoneal macrophages was used to estimate the atherogenic properties of the serum. Serum of propranolol-treated rabbits induced accumulation of cholesterol in cultivated cells. Propranolol also induced an increase of the thickness of aortic intima, lipid accumulation and increasing of cell's number in myointimal thickening. Thus, atherogenic effect of beta-blocker propranolol was found both in vitro and in vivo.  相似文献   

8.
The cytoskeleton in endocardial endothelium of rat heart was examined by en face confocal scanning laser microscopy. In the ventricular cavity, endocardial endothelial cells had a polygonal shape and F-actin staining was generally restricted to the peripheral junctional actin band. Central F-actin bundles, or stress fibers, in endocardial endothelial cells were found on the tendon end of papillary muscles, especially in the right ventricle, and frequently in the outflow tract of both ventricles; elsewhere, stress fibers were scarce. Many endocardial endothelial cells were elongated in areas of endothelium with stress fibers, but no correlation was found between cell elongation and the number of stress fibers. An inverse correlation was found between the number of stress fibers and the surface area of endocardial endothelial cells. Shear stress as well as mechanical deformation of the surface of the ventricular wall during the cardiac cycle may affect cell shape and the organization of actin filaments in endocardial endothelial cells. Vimentin in endocardial endothelial cells formed a filamentous network with some distinct cytoplasmic and juxtanuclear vimentin bundles. No perinuclear ring of vimentin filaments was observed in endocardial endothelium. Microtubules in endocardial endothelial cells were, in contrast to endothelial cells of rat aorta, not aligned, less closely packed and originated from randomly distributed centriolar regions. The cytoskeleton has been suggested to play an important role in cellular functions of vascular endothelial cells. Accordingly, differences in the cytoskeletal organization between endocardial and vascular endothelial cells may relate to differences in functional properties.  相似文献   

9.
Ultrastructure of venules in the cat brain   总被引:3,自引:0,他引:3  
Summary Intracerebral venules of the cat were examined to establish criteria for a distinct separation between the venous and arterial system, and to characterize, in greater detail, the mural construction of individual venules. The intracerebral venules were compared with those of other organs. Venules do not have a vascular wall composed clearly of endothelium, media, and adventitia, as is characteristic of arteries and arterioles. The venous endothelium has a similar structure to that of capillaries. The periendothelial cells of the venule differ in shape depending on the vascular diameter. The number of periendothelial cell processes in postcapillary venules increases progressively. Segments in which the basal lamina of the endothelium merges with that of the glia cover a smaller portion of the circumference than in venous capillary loops. In collecting venules, the endothelium is almost completely enveloped by periendothelial cells which have a larger number of filaments. There are no typical smooth muscle cells in the intracerebral venules. The perivascular space becomes wider in collecting venules, contains adventitial cells, phagocytes and a great number of collagen fibers.  相似文献   

10.
Role of platelet-derived growth factor (PDGF) in myointimal thickening described in “response to injury” hypothesis was investigated with artery of rats in culture and with air-injured artery of rats. PDGF promoted cell growth in ring preparation of carotid artery in culture denuded with citrate. It did not promote any cell growth in preparations without denudation. Trapidil, a PDGF antagonist, inhibited the cell growth promoted by PDGF in the denuded arterial ring. Systemic injection of PDGF was performed for 8 days to rats with thrombocytopenia induced by injections of anti-platelet serum. This treatment caused myointimal thickening of carotid artery 10 days after denudation by means of air injury. Trapidil at oral intake levels of 1, 3 and 30 mg/kg/day inhibited this change observed in denuded site of artery. Trapidil at oral intake of 6 mg/kg/day also inhibited myointimal thickening observed 15 days after denudation of carotid artery by air injury in normotensive and spontaneous hypertensive rats both with normal platelet counts. These results evidenced the role of PDGF in myointimal thickening described in “response to injury” hypothesis and clinical use of trapidil may be a new approach to the treatment of atherosclerosis.  相似文献   

11.
Recent ultrastructural studies have revealed that there are differences in endothelial cell shape and cytoskeletal architecture between the arterial and ventricular faces of developing semilunar valves. In the present work we have analyzed valvular endothelial cell response to taxol in the chick embryo. Following taxol administration, abnormal mitotic cells appear in the endothelium of both faces of the cusps. Interphase cells show few structural alterations. No differential response of the valvular endothelium to the drug was observed in the arterial or ventricular faces of the cusps.  相似文献   

12.
Endothelial monolayer permeability to macromolecules   总被引:9,自引:0,他引:9  
The barrier function of the endothelial monolayer has not been extensively investigated using the cultured endothelium. The in vitro approach may contribute to a more complete understanding of microvessel wall permeability. Our studies using an in vitro endothelial monolayer system have led us to the following conclusions: the endothelial monolayer is more permeable to small-molecular-weight substances than to large molecules; the permeability of albumin is different for endothelial cells derived from different vascular sites (higher for pulmonary venous than pulmonary arterial endothelium); basement membrane components may have a significant role in the permeability of albumin across the endothelium; control of endothelial monolayer permeability is determined not only by the characteristics of the macromolecule (i.e., size and charge) but also by the shape of the endothelial cells and the size of interendothelial space.  相似文献   

13.
A I Gotlieb  P Boden 《In vitro》1984,20(7):535-542
Organ cultures of porcine thoracic aorta were studied to define the characteristics of this system as a model to study the reaction of endothelial cells (ECs) and the underlying smooth muscle cells (SMCs) to injury. Both nonwounded and wounded cultures, the latter having had part of the endothelial surface gently denuded with a scalpel blade, were studied over a 7 d period by scanning and transmission electron microscopy. The results showed that the nonwounded ECs underwent a shape change from elongated to polygonal within 24 h in culture. In both nonwounded and wounded explants there was cell proliferation beneath the nondenuded endothelium so that by 7 d several layers of cells were present showing features of the secretory type of SMCs. This proliferation, however, did not occur if the endothelium was totally removed from the aorta. There was also evidence of gaps between the surface ECs, and by 7 d lamellipodia of cells beneath the surface were present in these gaps. Occasionally, elongated cells were seen to be present on the surface of the endothelium. In the wounded organ culture, cell migration and proliferation occurred extending from the wound edge and producing a covering of cells on the denuded area. There were also multilayered cells beneath the surface similar to the nonwounded area. Occasional foam cells were seen in the depth of the multilayered proliferating cells. The results indicate that organ culture of porcine thoracic aorta is a good model to study the reaction of ECs and underlying SMCs to injury.  相似文献   

14.
Summary Organ cultures of porcine thoracic aorta were studied to define the characteristics of this system as a model to study the reaction of endothelial cells (ECs) and the underlying smooth muscle cells (SMCs) to injury. Both nonwounded and wounded cultures the latter having had part of the endothelial surface gently denuded with a scalpel blade, were studied over a 7 d period by scanning and transmission electron microscopy. The results showed that the nonwounded ECs underwent a shape change from elongated to polygonal within 24 h in culture. In both nonwounded and wounded explants there was cell proliferation beneath the nondenuded endothelium so that by 7 d several layers of cells were present showing features of the secretory type of SMCs. This proliferation, however, did not occur if the endothelium was totally removed from the aorta. There was also evidence of gaps between the surface ECs, and by 7 d lamellipodia of cells beneath the surface were present in these gaps. Occasionally, elongated cells were seen to be present on the surface of the endothelium. In the wounded organ culture, cell migration and proliferation occurred extending from the wound edge and producing a covering of cells on the denuded area. There were also multilayered cells beneath the surface similar to the nonwounded area. Occasional foam cells were seen in the depth of the multilayered proliferating cells. The results indicate that organ culture of porcine thoracic aorta is a good model to study the reaction of ECs and underlying SMCs to injury. This work was supported by a grant from the Ontario Heart Foundation.  相似文献   

15.
The formation of tissue properties of the aorta endothelium of two-week chicken embryos, and one day chickens has been followed. The morphological characteristics of the aorta endothelial lining in adult chickens are given. The endothelium was studied in tangential sections and flat film preparations. Histological certain histochemical and biometrical methods were used. At the end of the second week the signs of a heteromorphous state of the endothelium were already seen most distinctly, which appeared as early as the end of the first week of embryogenesis. Later these signs accumulated and became stronger. The aorta endothelial lining of adult chickens is polymorphous. Certain regularities in the regional distribution of cells of a definite shape and area were observed in it. Throughout embryogenesis the endothelium behaved like a tissue having its oun cambium. The mitotic index drops in the course of embryogenesis. No mitoses have been found in the endothelial lining of adult chickens.  相似文献   

16.
In this study, the architecture of the interstitial tissue of the boar testis was examined by using scanning and transmission electron microscopes. The boar testis was remarkable for the abundance of interstitial tissue, and Leydig cells having many microvilli in their surface were almost round in shape. Both bundles of collagen fibers and networks of reticular fibers were observed around the Leydig cells. The capillary in the interstitial tissue of the boar was a muscle type, and both pericytes and collagen fibers were observed around the capillaries. The lymphatic capillary was poorly developed in the interstitial tissues of the boar testis. Endothelial cells were the only component of the capillary wall, and anchoring filaments were often observed on the abluminal surface of the endothelium.  相似文献   

17.
A single infusion of Escherichia coli endotoxin into sheep results in structural evidence of pulmonary endothelial injury, increases in both prostacyclin and prostaglandin E2 (PGE2) in lung lymph, and an increase in pulmonary microvascular permeability. Endotoxin-induced lung endothelial damage can also be induced in vitro, but to date these studies have utilized endothelium from large pulmonary vessels. In the present study, we have grown endothelial cells from peripheral lung vessels of cows and sheep and exposed these microvascular endothelial cells to endotoxin. Controls included lung microvascular endothelium without endotoxin and endothelial cells from bovine and sheep main pulmonary artery with and without addition of endotoxin. We found that endotoxin caused significant increases in release of prostacyclin and PGE2 from both bovine and sheep lung microvascular and pulmonary artery endothelium. Normal bovine and sheep pulmonary artery and bovine lung microvascular endothelium released greater levels of prostacyclin than PGE2 (ng/ng); release of PGE2 from the microvascular cells was greater than from the pulmonary artery endothelium in both species. Exposure of endothelial cells from cow and sheep main pulmonary artery to endotoxin results in endothelial cell retraction and pyknosis, a loss of barrier function, increased release of prostacyclin and PGE2 and eventual cell lysis. In lung microvascular cells, the increases in prostanoids were accompanied by changes in cell shape but occurred in the absence of either detectable alterations in barrier function or cytolysis. Thus, while endotoxin causes alterations to endothelial cells from both large and small pulmonary vessels, the effects are not identical suggesting site specific phenotypic expression of endothelial cells even within a single vessel. To determine whether the response of either the large or small pulmonary vessel endothelial cells in culture mimics most closely the in vivo response of the lung to endotoxin requires further study.  相似文献   

18.
Orientation of endothelial cells in shear fields in vitro   总被引:7,自引:0,他引:7  
Vascular endothelial cells subjected to fluid shear stress change their shape from polygonal to ellipsoidal and become uniformly oriented with the flow. In order to study the mechanisms of this response, we have measured the relaxation of bovine aortic endothelial cells that were grown on glass coverslips and exposed to fluid shear stress for 72 hours. An image analysis system was developed to quantify the cell shape relaxation that occurs following the cessation of shear stress. This method provides two different quantitative measures of relaxation: the loss of elongated shape by the cells and the change in cell direction with time. After equilibration to a fluid shear stress level of 8 dynes/cm2, cells immersed in static medium relax their shape in about 20 hours. After 72 hours in this static condition, the cell elongation is comparable to that of unstressed control cells but vestiges remain of the original orientation in the flow direction. This relaxation process contributes to our understanding of the response of vascular endothelium to fluid shear stress.  相似文献   

19.
It is well-known that cyclic variations of the vascular diameter, a phenomenon called vasomotion, are induced by synchronous calcium oscillations of smooth muscle cells (SMCs). However, the role of the endothelium on vasomotion is unclear. Some experimental studies claim that the endothelium is necessary for synchronization and vasomotion, whereas others report rhythmic contractions in the absence of an intact endothelium. Moreover, endothelium-derived factors have been shown to abolish vasomotion by desynchronizing the calcium signals in SMCs. By modeling the calcium dynamics of a population of SMCs coupled to a population of endothelial cells, we analyze the effects of an SMC vasoconstrictor stimulation on endothelial cells and the feedback of endothelium-derived factors. Our results show that the endothelium essentially decreases the SMCs calcium level and may move the SMCs from a steady state to an oscillatory domain, and vice versa. In the oscillatory domain, a population of coupled SMCs exhibits synchronous calcium oscillations. Outside the oscillatory domain, the coupled SMCs present only irregular calcium flashings arising from noise modeling stochastic opening of channels. Our findings provide explanations for the published contradictory experimental observations.  相似文献   

20.
Basement lamina and pericytes of growing blood microvessels were analyzed in the chick embryo optic tectum, from the 8th incubation day to hatching. Formation of the basement lamina and morphological changes of the pericytes take place in a short range of time, but late in the embryonic life, when also the blood brain barrier (bbb) devices are developing. The spatial and temporal coincidence between basement lamina formation, endothelium tight junction differentiation, and perivascular arrangement of the astrocytic glia, indicates that these events are correlated and corroborates the hypothesis that the glia needs an extracellular matrix to induce the junctional system maturation in the neural endothelia. Pericytes are irregular in shape during the early neural angiogenesis and smooth and flattened later, as the basement lamina synthesis is taking place; these cells represent a second line of barrier beyond the endothelium when the bbb is immature, owing to their phagocytic and digestive properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号