首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marked kinetic differences were observed when hepatic newly synthesized cholesterol and preformed cholesterol were separately radiolabeled and separately traced into bile. Whereas newly synthesized cholesterol was not evenly distributed throughout the liver but was preferentially secreted into bile, preformed cholesterol was in near-complete equilibrium in the whole liver and bile. Furthermore, whereas newly synthesized cholesterol in bile originated from the interior of the hepatocyte, results suggest that biliary preformed cholesterol may be transported directly from the blood through the plasma membrane of the hepatocyte and secreted from the canaliculus without first entering the interior of the cell and mixing with newly synthesized cholesterol.  相似文献   

2.
Recent studies have indicated that intestinal cholesterol absorption is a multistep process, which is regulated by multiple genes at the enterocyte level. However, the molecular mechanisms whereby there are gender differences in intestinal cholesterol absorption efficiency and the efficiency of cholesterol absorption increases with age have not yet been fully understood. To explore whether aging increases cholesterol absorption via intestinal sterol transporters, we studied the higher cholesterol-absorbing C57L/J vs. the lower cholesterol-absorbing AKR/J mice at 8 (young adult), 36 (older adult), and 50 (aged) wk of age. To test the hypothesis that estrogen receptor (ER )alpha plays an important regulatory role in cholesterol absorption, we investigated the gonadectomized mice of both genders treated with 17beta-estradiol-releasing pellets at 0, 3, or 6 mug/day and antiestrogenic ICI 182,780 at 125 microg/day. We found that hepatic outputs of biliary cholesterol were significantly increased with age and in response to high levels of estrogen. Aging significantly enhances cholesterol absorption by suppressing expression of the jejunal and ileal sterol efflux transporters [ATP-binding cassette (Abc)g5 and Abcg8] and upregulating expression of the putative duodenal and jejunal sterol influx transporter Npc1l1. Estrogen significantly augmented cholesterol absorption mostly due to an upregulated expression of intestinal Npc1l1, Abcg5, and Abcg8 via the intestinal ERalpha pathway, which can be fully abolished by the antagonist. We conclude that ERalpha activated by estrogen and aging enhances cholesterol absorption by increasing biliary lipid output and mediating intestinal sterol transporters favoring influx of intraluminal cholesterol molecules across the apical membrane of the enterocyte.  相似文献   

3.
Cholesterol synthesis in the perfused liver of pregnant hamsters   总被引:2,自引:0,他引:2  
Pregnancy is a risk factor for the development of cholesterol gallstones. In pregnant women, biliary cholesterol saturation and secretion are increased. To investigate whether this was due to increased cholesterol synthesis, we studied hepatic cholesterol synthesis in Syrian Golden hamsters. Female controls and animals 10- to 14-days pregnant were studied. The studies were performed in the in situ perfused hamster liver. Cholesterol synthesis was determined by measuring the incorporation of 3H2O added to the perfusate into hepatic, perfusate, and bile cholesterol during a 90-min period. In both pregnant groups, bile flow decreased significantly, but biliary cholesterol concentration increased only in the 14-day pregnant group. The cholesterol synthesis rate averaged (mean +/- SD) 172 +/- 27, 127 +/- 37, and 552 +/- 79 nmol X hr-1 X g liver-1 in controls, 10-day, and 14-day pregnant animals, respectively. The 14-day pregnant animals secreted a markedly higher fraction (47.3 +/- 11.3 vs. 11.1 +/- 13.4%; P less than 0.01) of newly synthesized cholesterol into bile but not into perfusate. Chenodeoxycholate, but not cholate, synthesis rate was decreased in both pregnant groups. We conclude from our studies that hepatic cholesterol synthesis increases towards the end of pregnancy in the hamster and that more newly synthesized cholesterol is secreted into bile at that time. This could at least partially explain the increased biliary cholesterol saturation and secretion observed in women in the third trimenon, and explain pregnancy as a risk factor in the development of cholesterol gallstones.  相似文献   

4.
The phosphatidylethanolamine N-methyltransferase (PEMT) pathway of phosphatidylcholine (PC) biosynthesis is not essential for the highly specific acyl chain composition of biliary PC. We evaluated whether the PEMT pathway is quantitatively important for biliary PC secretion in mice under various experimental conditions. Biliary bile salt and PC secretion were determined in mice in which the gene encoding PEMT was inactivated (Pemt(-/-)) and in wild-type mice under basal conditions, during acute metabolic stress (intravenous infusion of the bile salt tauroursodeoxycholate), and during chronic metabolic stress (feeding a taurocholate-containing diet for 1 week). The activity of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme of PC biosynthesis via the CDP-choline pathway, and the abundance of multi-drug-resistant protein 2 (Mdr2; encoded by the Abcb4 gene), the canalicular membrane flippase essential for biliary PC secretion, were determined. Under basal conditions, Pemt(-/-) and wild-type mice exhibited similar biliary secretion rates of bile salt and PC ( approximately 145 and approximately 28 nmol/min/100 g body weight, respectively). During acute or chronic bile salt administration, the biliary PC secretion rates increased similarly in Pemt(-/-) and control mice. Mdr2 mRNA and protein abundance did not differ between Pemt(-/-) and wild-type mice. The cytidylyltransferase activity in hepatic lysates was increased by 20% in Pemt(-/-) mice fed the basal (bile salt-free) diet (P < 0.05). We conclude that the biosynthesis of PC via the PEMT pathway is not quantitatively essential for biliary PC secretion under acute or chronic bile salt administration.  相似文献   

5.
High density lipoprotein cholesterol is thought to represent a preferred source of sterols secreted into bile following hepatic uptake by scavenger receptor class B type I (SR-BI). The present study aimed to determine the metabolic effects of an endothelial lipase (EL)–mediated stimulation of HDL cholesterol uptake on liver lipid metabolism and biliary cholesterol secretion in wild-type, SR-BI knockout, and SR-BI overexpressing mice. In each model, injection of an EL expressing adenovirus decreased plasma HDL cholesterol (P < 0.001) whereas hepatic cholesterol content increased (P < 0.05), translating into decreased expression of sterol-regulatory element binding protein 2 (SREBP2) and its target genes HMG-CoA reductase and LDL receptor (each P < 0.01). Biliary cholesterol secretion was dependent on hepatic SR-BI expression, being decreased in SR-BI knockouts (P < 0.001) and increased following hepatic SR-BI overexpression (P < 0.001). However, in each model, biliary secretion of cholesterol, bile acids, and phospholipids as well as fecal bile acid and neutral sterol content, remained unchanged in response to EL overexpression. Importantly, hepatic ABCG5/G8 expression did not correlate with biliary cholesterol secretion rates under these conditions. These results demonstrate that an acute decrease of plasma HDL cholesterol levels by overexpressing EL increases hepatic cholesterol content but leaves biliary sterol secretion unaltered. Instead, biliary cholesterol secretion rates are related to the hepatic expression level of SR-BI. These data stress the importance of SR-BI for biliary cholesterol secretion and might have relevance for concepts of reverse cholesterol transport.  相似文献   

6.
We evaluated the major pathways of cholesterol regulation in the peroxisome-deficient PEX2(-/-) mouse, a model for Zellweger syndrome. Zellweger syndrome is a lethal inherited disorder characterized by severe defects in peroxisome biogenesis and peroxisomal protein import. Compared with wild-type mice, PEX2(-/-) mice have decreased total and high-density lipoprotein cholesterol levels in plasma. Hepatic expression of the SREBP-2 gene is increased 2.5-fold in PEX2(-/-) mice and is associated with increased activities and increased protein and expression levels of SREBP-2-regulated cholesterol biosynthetic enzymes. However, the upregulated cholesterogenic enzymes appear to function with altered efficiency, associated with the loss of peroxisomal compartmentalization. The rate of cholesterol biosynthesis in 7- to 9-day-old PEX2(-/-) mice is markedly increased in most tissues, except in the brain and kidneys, where it is reduced. While the cholesterol content of most tissues is normal in PEX2(-/-) mice, in the knockout mouse liver it is decreased by 40% relative to that in control mice. The classic pathway of bile acid biosynthesis is downregulated in PEX2(-/-) mice. However, expression of CYP27A1, the rate-determining enzyme in the alternate pathway of bile acid synthesis, is upregulated threefold in the PEX2(-/-) mouse liver. The expression of hepatic ATP-binding cassette (ABC) transporters (ABCA1 and ABCG1) involved in cholesterol efflux is not affected in PEX2(-/-) mice. These data illustrate the diversity in cholesterol regulatory responses among different organs in postnatal peroxisome-deficient mice and demonstrate that peroxisomes are critical for maintaining cholesterol homeostasis in the neonatal mouse.  相似文献   

7.
We studied the effect of a bean diet on biliary lipid secretion, serum cholesterol concentration, and hepatic cholesterol metabolism in the rat. Rats fed a bean diet for 10-12 days had increased biliary cholesterol output and molar percentage by 300% and 200%, respectively, compared to rats fed an isocaloric and isoprotein casein diet. Biliary phospholipid output increased 180%. Bile flow and biliary bile salt output remained in the normal range. Total serum and VLDL cholesterol concentration significantly decreased 27% and 50%, respectively, in the rats fed the bean diet. Hepatic cholesterogenesis was increased 170% in the bean-fed animals. The relative contribution of newly synthesized hepatic cholesterol to total biliary cholesterol increased 200%, and that of endogenous origin only 50%. These results suggested that newly synthesized hepatic cholesterol was preferentially channelled to the biliary cholesterol secretory pathway in bean-fed rats. Although hepatic cholesteryl ester concentration increased 240%, the incorporation of [14C]oleate into hepatic cholesteryl esters was significantly decreased by 30% in isolated hepatocytes of bean-fed animals. These results were consistent with the possibility that the availability of hepatic free cholesterol for biliary secretion was increased in the bean-fed animals. This study demonstrates that bean intake has a profound effect on the metabolic channelling and compartmentalization of hepatic cholesterol, resulting in a significant decrease in total serum and very low density lipoprotein cholesterol concentrations and a high biliary cholesterol output.  相似文献   

8.
The impact of apolipoprotein C-I (apoC-I) deficiency on hepatic lipid metabolism was addressed in mice in the presence or the absence of cholesteryl ester transfer protein (CETP). In addition to the expected moderate reduction in plasma cholesterol levels, apoCIKO mice showed significant increases in the hepatic content of cholesteryl esters (+58%) and triglycerides (+118%) and in biliary cholesterol concentration (+35%) as compared with wild-type mice. In the presence of CETP, hepatic alterations resulting from apoC-I deficiency were enforced, with up to 58% and 302% increases in hepatic levels of cholesteryl esters and triglycerides in CETPTg/apoCIKO mice versus CETPTg mice, respectively. Biliary levels of cholesterol, phospholipids, and bile acids were increased by 88, 77, and 20%, respectively, whereas total cholesterol, HDL cholesterol, and triglyceride concentrations in plasma were further reduced in CETPTg/apoCIKO mice versus CETPTg mice. Finally, apoC-I deficiency was not associated with altered VLDL production rate. In line with the previously recognized inhibition of lipoprotein clearance by apoC-I, apoC-I deficiency led to decreased plasma lipid concentration, hepatic lipid accumulation, and increased biliary excretion of cholesterol. The effect was even greater when the alternate reverse cholesterol transport pathway via VLDL/LDL was boosted in the presence of CETP.  相似文献   

9.
10.
11.
PURPOSE OF REVIEW: The transhepatic traffic of cholesterol from plasma lipoproteins into the bile is critical for overall cholesterol homeostasis and its alterations may lead to cholesterol gallstone formation. This review summarizes recent progress in understanding the key hepatic cholesterol metabolism-related proteins and pathways that influence biliary secretion of cholesterol. RECENT FINDINGS: In cholesterol-fed apolipoprotein E knockout mice, the availability of dietary cholesterol for biliary disposal is decreased and diet-induced gallstone formation is impaired. Scavenger receptor class B type I is relevant for cholesterol transport from plasma HDL into the bile in chow-fed mice, however its expression is not critical for biliary cholesterol secretion and gallstone formation in lithogenic diet-fed mice. Intrahepatic cholesterol transport proteins (e.g. sterol carrier protein-2, Niemann Pick type C-1 protein) also determine liver cholesterol available for biliary secretion in mice. Genetic manipulation of canalicular ATP-binding cassette transporter G5 and G8 expression in mice has established their essential role for biliary cholesterol secretion. SUMMARY: Recent studies have underscored that different proteins involved in hepatic cholesterol transport regulate the availability of cholesterol for biliary secretion. These advances may provide new avenues for prevention and treatment of various disease conditions linked to abnormal cholesterol metabolism.  相似文献   

12.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

13.
It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.  相似文献   

14.
Qiu J  Rønnekleiv OK  Kelly MJ 《Steroids》2008,73(9-10):985-991
Estrogens are involved in the hypothalamic control of multiple homeostatic functions including reproduction, stress responses, energy metabolism, sleep cycles, temperature regulation and motivated behaviors. The actions of 17beta-estradiol (E(2)) in the brain have been attributed to the activation of estrogen receptors alpha and beta, as well as G-protein-coupled or other membrane-associated estrogen receptors. Recently, we have identified a putative membrane-associated estrogen receptor that is coupled to desensitization of GABA(B) receptors in guinea pig and mouse hypothalamic neurons including proopiomelanocortin (POMC) neurons. We have synthesized a new nonsteroidal compound, STX, which selectively targets the Galphaq-coupled phospholipase C-protein kinase C-protein kinase A pathway, and have established that STX is more potent than E(2) in mediating this desensitization in an ICI 182,780-sensitive manner in both guinea pig and mouse neurons. Both E(2) and STX are fully efficacious in estrogen receptor alpha, beta knock-out mice. Finally, we observed that the putative membrane-associated estrogen receptor is different from GPR30 in arcuate neurons using whole-cell patch recording in hypothalamic slices from GPR30 knock-out mice. Collectively, these findings suggest that the mER is distinct from ERalpha, ERbeta or GPR30.  相似文献   

15.
Estrogens are known to cause hepatotoxicity such as intrahepatic cholestasis in susceptible women during pregnancy, after administration of oral contraceptives, or during postmenopausal replacement therapy. Enterohepatic nuclear receptors including farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive active/androstane receptor (CAR) are important in maintaining bile acid homeostasis and protecting the liver from bile acid toxicity. However, no nuclear receptor has been implicated in the mechanism for estrogen-induced hepatotoxicity. Here Era(-/-), Erb(-/-), Fxr(-/-), Pxr(-/-), and Car(-/-) mice were employed to show that Era(-/-) mice were resistant to synthetic estrogen 17alpha-ethynylestradiol (EE2)-induced hepatotoxicity as indicated by the fact that the EE2-treated Era(-/-) mice developed none of the hepatotoxic phenotypes such as hepatomegaly, elevation in serum bile acids, increase of alkaline phosphatase activity, liver degeneration, and inflammation. Upon EE2 treatment, estrogen receptor alpha (ERalpha) repressed the expression of bile acid and cholesterol transporters (bile salt export pump (BSEP), Na(+)/taurocholate cotransporting polypeptide (NTCP), OATP1, OATP2, ABCG5, and ABCG8) in the liver. Consistently, biliary secretions of both bile acids and cholesterol were markedly decreased in EE2-treated wild-type mice but not in the EE2-treated Era(-/-) mice. In addition, ERalpha up-regulated the expression of CYP7B1 and down-regulated the CYP7A1 and CYP8B1, shifting bile acid synthesis toward the acidic pathway to increase the serum level of beta-muricholic acid. ERbeta, FXR, PXR, and CAR were not involved in regulating the expression of bile acid transporter and biosynthesis enzyme genes following EE2 exposure. Taken together, these results suggest that ERalpha-mediated repression of hepatic transporters and alterations of bile acid biosynthesis may contribute to development of the EE2-induced hepatotoxicity.  相似文献   

16.
Dietary orotic acid is known to cause impaired fatty acid synthesis and increased cholesterol synthesis in rats. We found that the impaired fatty acid synthesis occurs during the first day of orotic acid feeding and, in studies with albumin-bound [1-14C]palmitic acid, an associated decrease in the rate of esterification of this fatty acid into triacylglycerol, phospholipid, and cholesteryl ester was observed. These changes may result from the known decreases in liver levels of adenine nucleotides or, as reported here, from decreased liver CoASH levels in orotic acid-fed rats. The increase in hepatic cholesterol synthesis occurred during the second day of orotic acid feeding. It was detected by increased incorporation of [1,2-14C]acetate into cholesterol by liver slices and by a 7-fold increase in HMG-CoA reductase activity. At the same time the biliary output of cholesterol was increased 2-fold and studies using 3H2O revealed that the output of newly synthesized cholesterol in bile was increased 5-fold. The content of cholesteryl ester in hepatic microsomes decreased during orotic acid feeding but free cholesterol was unchanged. The findings are interpreted to suggest that the increased bile cholesterol secretion caused by orotic acid is a result of impaired hepatic cholesterol esterification and that the increase in HMG-CoA reductase activity is a result of diminished negative feedback due to the depleted content of cholesteryl ester in the hepatic microsomes.  相似文献   

17.
The main player in biliary cholesterol secretion is the heterodimeric transporter complex, ABCG5/ABCG8, the function of which is necessary for the majority of sterols secreted into bile. It is not clear whether the primary step in this process is flopping of cholesterol from the inner to the outer leaflet of the canalicular membrane, with desorption by mixed micelles, or decreasing of the activation energy required for cholesterol desorption from the outer membrane leaflet. In this study, we investigated these mechanisms by infusing Abcg8(+/+), Abcg8(+/-), and Abcg8(-/-) mice with hydrophilic and hydrophobic bile salts. In Abcg8(-/-) mice, this failed to substantially stimulate biliary cholesterol secretion. Infusion of the hydrophobic bile salt taurodeoxycholate also resulted in cholestasis, which was induced in Abcg8(-/-) mice at a much lower infusion rate compared with Abc8(-/-) and Abcg8(+/-) mice, suggesting a reduced cholesterol content in the outer leaflet of the canalicular membrane. Indeed, isolation of canalicular membranes revealed a reduction of 45% in cholesterol content under these conditions in Abcg8(-/-) mice. Our data support the model that ABCG5/ABCG8 primarily play a role in flopping cholesterol (and sterols) from the inner leaflet to the outer leaflet of the canalicular membrane.  相似文献   

18.
Contraceptive steroids increase cholesterol in bile: mechanisms of action   总被引:4,自引:0,他引:4  
Contraceptive steroids increase the risk of acquiring cholesterol gallstones. The factors responsible include an increase in cholesterol saturation of bile and an increase in rate of secretion of cholesterol into bile. The goal of this study was to investigate the mechanism(s) of these increases in biliary cholesterol. During the use of contraceptive steroids, cholesterol saturation of gallbladder bile and the amount of cholesterol secreted per mole of bile acid increased (P less than 0.05 and P less than 0.02, respectively). Cholesterol absorption, cholesterol synthesis, chylomicron remnant clearance, and the concentration of plasma and lipoprotein lipids were not altered by contraceptive steroids. Despite this apparent lack of effect, important correlations were present during steroid use. LDL (low density lipoprotein) cholesterol increased as dietary cholesterol increased (r = 0.58, P less than 0.025). Cholesterol synthesis correlated directly with VLDL cholesterol concentration (r = 0.64, P less than 0.01), biliary cholesterol secretion (r = 0.68, P less than 0.01) and with molar percent cholesterol in bile (r = 0.49, P = 0.06). Chylomicron remnant clearance also correlated with cholesterol secretion (r = 0.85, P less than 0.001). As either remnant uptake or synthesis increased, the effect of the other source of hepatic cholesterol on biliary cholesterol secretion diminished. These relationships were not observed in the same subjects when they were not taking the hormones. The findings suggest that both newly synthesized and dietary cholesterol contribute to the cholesterol secreted in bile. This is consistent with the hypothesis that cholesterol for secretion into bile and VLDL is derived from a common metabolic pool of free cholesterol. It is proposed that contraceptive steroids exert their effect on biliary cholesterol by increasing cholesterol entering the pool and/or by inhibiting hepatic ACAT (acylcoenzyme A:cholesterol acyltransferase) activity, a known effect of progesterone, so that an increase in free cholesterol entering the pool leads to an increase in output.  相似文献   

19.
The present study investigates the effects of the antiestrogen ICI 182,780 (ICI) on the display of sexual behaviors in female rats. ICI 182,780 is a pure anti-estrogen and when given systemically, ICI is thought to act only in the periphery, and is not believed to cross the blood brain barrier. The present study examines the effects of ICI on sexual receptivity and on paced mating behavior following treatment with estradiol benzoate (EB) and progesterone (P) (Experiment 1) or with EB alone (Experiment 2). In Experiment 1, ICI (250.0 microg) did not affect the display of receptivity or paced mating behavior induced by EB and P. In contrast, in Experiment 2 female rats receiving EB alone displayed a decrease in the level of sexual receptivity following treatment with 500.0 and 750.0 microg ICI (but not 250.0 microg ICI). In addition, in Experiment 2 EB-treated female rats receiving 250.0 microg ICI spent more time away from the male rat following an intromission and were more likely to exit from the male compartment following a mount. Last, ICI had potent antiestrogenic effects on vaginal cytology (Experiment 2) and on the uterus (Experiments 1 and 2). The present study supports a role for peripheral estrogen receptors in sexual receptivity and paced mating behavior and suggests that estrogen receptor activation may decrease the aversive sensation associated with sexual stimulation.  相似文献   

20.
Studies were undertaken to assess the contribution of lipoprotein cholesterol to bile and to determine whether already-existent hepatic free cholesterol and the free cholesterol which is newly generated from the hydrolysis of hepatic cholesteryl esters are equally available for secretion into bile or constitute metabolically separate pools. Rats with a bile fistula were injected with an intravenous bolus of high-density lipoprotein recombinants containing free [14C]cholesterol and [3H]cholesteryl esters. Results showed (1) that bile free [14C]cholesterol secretion was a constant and linear proportion of the whole liver free [14C]cholesterol pool, (2) that secretion into bile of free [3H]cholesterol was in direct proportion to the rate of hydrolysis of hepatic [3H]cholesteryl esters, and (3) that rates of biliary cholesterol secretion were very similar when secretion was calculated using the specific activity of free [14C]cholesterol and free [3H]cholesterol in the entire liver to 'label' the precursor free cholesterol pool. Furthermore, rates of secretion that were calculated using either isotope closely approximated the mass of free cholesterol that was directly measured in bile. Results thus indicate that because of equilibration and extensive dilution by the large pool of already-existent free cholesterol, the transport of isotopic cholesterol from lipoproteins cannot be used to directly assess the contribution of lipoprotein cholesterol to the cholesterol that is secreted in bile. These studies further suggest that the totality of preformed free cholesterol in the liver is in metabolic equilibrium in one single kinetic pool and that all hepatic free cholesterol is potentially available for secretion into bile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号