首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Plants have diversified their leaf morphologies to adapt to diverse ecological niches. The molecular components responsible for regulating leaf morphology, however, have not been fully elucidated. By screening Arabidopsis activation-tagging lines, we identified a dominant mutant, which we designated longifolia1-1D (lng1-1D). lng1-1D plants were characterized by long petioles, narrow but extremely long leaf blades with serrated margins, elongated floral organs, and elongated siliques. The elongated leaves of the mutant were due to increased polar cell elongation rather than increased cell proliferation. Molecular characterization revealed that this phenotype was caused by overexpression of the novel gene LNG1, which was found to have a homolog, LNG2,in Arabidopsis. To further examine the role of the LNG genes, we characterized lng1 and lng2 loss-of-function mutant lines. In contrast to the elongated leaves of lng1-1D plants, the lng1 and lng2 mutants showed slightly decreased leaf length. Furthermore, the lng1-3 lng2-1 double mutant showed further decreased leaf length associated with less longitudinal polar cell elongation. The leaf widths in lng1-3 lng2-1 mutant plants were similar to those in wild type, implying that the role of LNG1 and LNG2 on polar cell elongation is similar to that of ROTUNDIFOLIA3 (ROT3). However, analysis of a lng1-3 lng2-1 rot3-1 triple mutant and of a lng1-1D rot3-1 double mutant indicated that LNG1 and LNG2 promote longitudinal cell elongation independently of ROT3. Taken together, these findings indicate that LNG1 and LNG2 are new components that regulate leaf morphology by positively promoting longitudinal polar cell elongation independently of ROT3 in Arabidopsis.  相似文献   

4.
5.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 belongs, with A1, B1 and B2, to the basic protein subset of the hnRNP complex in mammalian cells. All these proteins share a modular structure consisting of two conserved RNA binding domains linked to less conserved Gly-rich domains (2xRBD-Gly). In the framework of our studies on the genetic basis of hnRNP proteins structure and diversity we have isolated and sequenced the A2 gene and compared it to the previously described A1 gene. The A2 gene, which exists in a single copy on Ch. 7 band p15, is split in 12 exons including an alternatively spliced 36 nt mini exon specific for the human hnRNP protein B1. In this work we show that the intron/exon organisation of the A2 gene is identical to that of the A1 gene over the entire length, indicating a common origin by gene duplication. Moreover the comparison of corresponding exons evidences significant conservation also in the apparently divergent Gly-rich domains that could define previously unenvisaged structural and/or functional motifs. The A2 gene promoter is also analysed in comparison to that of the A1 gene.  相似文献   

6.
《Genomics》2020,112(2):1622-1632
Flowering is a prerequisite for pear fruit production. Therefore, the development of flower buds and the control of flowering time are important for pear trees. However, the molecular mechanism of pear flowering is unclear. SOC1, a member of MADS-box family, is known as a flowering signal integrator in Arabidopsis. We identified eight SOC1-like genes in Pyrus bretschneideri and analyzed their basic information and expression patterns. Some pear SOC1-like genes were regulated by photoperiod in leaves. Moreover, the expression patterns were diverse during the development of pear flower buds. Two members of the pear SOC1-like genes, PbSOC1d and PbSOC1g, could lead to early flowering phenotype when overexpressed in Arabidopsis. PbSOC1d and PbSOC1g were identified as activators of the floral meristem identity genes AtAP1 and AtLFY and promote flowering time. These results suggest that PbSOC1d and PbSOC1g are promoters of flowering time and may be involved in flower bud development in pear.  相似文献   

7.
Since first identifying two alleles of a rice (Oryza sativa) brassinosteroid (BR)-insensitive mutant, d61, that were also defective in an orthologous gene in Arabidopsis (Arabidopsis thaliana) BRASSINOSTEROID INSENSITIVE1 (BRI1), we have isolated eight additional alleles, including null mutations, of the rice BRI1 gene OsBRI1. The most severe mutant, d61-4, exhibited severe dwarfism and twisted leaves, although pattern formation and differentiation were normal. This severe shoot phenotype was caused mainly by a defect in cell elongation and the disturbance of cell division after the determination of cell fate. In contrast to its severe shoot phenotype, the d61-4 mutant had a mild root phenotype. Concomitantly, the accumulation of castasterone, the active BR in rice, was up to 30-fold greater in the shoots, while only 1.5-fold greater in the roots. The homologous genes for OsBRI1, OsBRL1 and OsBRL3, were highly expressed in roots but weakly expressed in shoots, and their expression was higher in d61-4 than in the wild type. Based on these observations, we conclude that OsBRI1 is not essential for pattern formation or organ initiation, but is involved in organ development through controlling cell division and elongation. In addition, OsBRL1 and OsBRL3 are at least partly involved in BR perception in the roots.  相似文献   

8.
The presence and role of septin proteins in yeast is well documented, but there is a growing appreciation for this family of proteins beyond yeast and extending to human cells. In this report we present the characterization and comparison of two highly similar human septin genes, PNUTL1 and PNUTL2. We compare the exon/intron structure of both genes, the steady-state mRNA levels in tumor cell lines and adult organs, the conceptual translation products from alternatively processed mRNAs and the development of specific immunologic reagents distinguishing either PNUTL1 or PNUTL2. The results illustrate a remarkable similarity between the two genes and their protein products while identifying specific differences in mRNA expression patterns. A summary of the described functional roles for mammalian septins is discussed along with an attempt to assimilate the alternative nomenclature existing for the same human septins, such as references to PNUTL1 and PNUTL2 as hCDCrel-1 and hCDCrel-2, respectively. The characterization of PNUTL1 and PNUTL2 represents a fundamental step in completing the characterization of the entire family of human septin genes.  相似文献   

9.
A Shamir  G Sj?holt  R P Ebstein  G Agam  V M Steen 《Gene》2001,271(2):285-291
The enzyme myo-inositol monophosphatase (Impa) catalyzes the synthesis of free myo-inositol from various myo-inositol monophosphates in the phosphatidylinositol signaling system. Impa is a lithium-blockable enzyme that has been hypothesized to be the biological target for lithium-salts used as mood-stabilizing drugs in the treatment of manic-depressive (bipolar) illness. As an initial step to explore the functional consequences of reduced or absent Impa activity in an animal model we here report the isolation of two Impa-encoding mouse genes, Impa1 and Impa2. Impa1 spans approximately 17.5 kb and contains nine exons of 46--1354 bp encoding a protein of 277 amino acids. Impa2 spans at least 19.5 kb and contains eight exons of 46--444 bp size encoding a protein of 290 amino acids. The genomic structure including the positions of the exon-intron splice sites seems to be conserved among myo-inositol monophosphatase genes in mammalian species. One or more Impa-like genes do also exist in evolutionary more distant species like invertebrates, plants and bacteria. The proteins encoded by the non-vertebrate genes seem to be equally related to Impa1 and Impa2. We therefore suggest that the Impa1 and Impa2 genes duplicated from a common ancestral gene after the evolutionary divergence of vertebrates.  相似文献   

10.
Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions.   总被引:14,自引:0,他引:14  
Two homologous genes, lin-12 and glp-1, encode transmembrane proteins required for regulatory cell interactions during C. elegans development. Based on their single mutant phenotypes, each gene has been thought to govern a distinct set of cell fates. We show here that lin-12 and glp-1 are functionally redundant during embryogenesis: Unlike either single mutant, the lin-12 glp-1 double mutant dies soon after hatching. Numerous cellular defects can be observed in these Lag (for lin-12 and glp-1) double mutants. Furthermore, we have identified two genes, lag-1 and lag-2, that appear to be required for both lin-12 and glp-1-mediated cell interactions. Strong loss-of-function lag mutants are phenotypically indistinguishable from the lin-12 glp-1 double; weak lag mutants have phenotypes typical of lin-12 and glp-1 single mutants. We speculate that the lin-12 and glp-1 proteins are biochemically interchangeable and that their divergent roles in development may rely largely on differences in gene expression.  相似文献   

11.
Nogo-66 receptor (NgR) has recently been identified as the neuronal receptor of the myelin-associated proteins Nogo-A, oligodendrocyte protein (OMgp) and myelin-associated glycoprotein (MAG), and mediates inhibition of axonal regeneration both in vitro and in vivo. Through database searches, we have identified two novel proteins (NgRH1 and NgRH2) that turned out to be homologous in their primary structures, biochemical properties and expression patterns to NgR. Like NgR, the homologues contain eight leucine-rich repeats (LRR) flanked by a leucine-rich repeat C-terminus (LRRCT) and a leucine-rich repeat N-terminus (LRRNT), and also have a C-terminal GPI signal sequence. Northern blot analysis showed predominant expression of NgRH1 and NgRH2 mRNA in the brain. In situ hybridization and immunohistochemistry on rat brain slices revealed neuronal expression of the genes. NgRH1 and NgRH2 were detected on the cell surface of recombinant cell lines as N-glycosylated GPI anchored proteins and, consistent with other GPI anchored proteins, were localized within the lipid rafts of cellular membranes. In addition, an N-terminal proteolytic fragment of NgR comprising the majority of the ectodomain was found to be constitutively secreted from cells. Our data indicate that NgR, NgRH1 and NgRH2 constitute a novel receptor protein family, which may play related roles within the CNS.  相似文献   

12.
A full-length cDNA clone for the mouse mdr1 gene can confer multidrug resistance when introduced by transfection into otherwise drug-sensitive cells. In the same assay, a full-length cDNA clone for a closely related member of the mouse mdr gene family, mdr2, fails to confer multidrug resistance. To identify the domains of mdr1 which are essential for multidrug resistance and which may be functionally distinct in mdr2, we have constructed chimeric cDNA molecules in which discrete domains of mdr2 have been introduced into the homologous region of mdr1 and analyzed these chimeras for their capacity to transfer drug resistance. The two predicted ATP-binding domains of mdr2 were found to be functional, as either could complement the biological activity of mdr1. Likewise, a chimeric molecule in which the highly sequence divergent linker domain of mdr2 had been introduced in mdr1 could also confer drug resistance. However, the replacement of either the amino- or carboxy-terminus transmembrane (TM) domain regions of mdr1 by the homologous segments of mdr2 resulted in inactive chimeras. The replacement of as few as two TM domains from either the amino (TM5-6) or the carboxy (TM7-8) half of mdr1 by the homologous mdr2 regions was sufficient to destroy the activity of mdr1. These results suggest that the functional differences detected between mdr1 and mdr2 in our transfection assay reside within the predicted TM domains.  相似文献   

13.
14.
15.
Zebisch M  Sträter N 《Biochemistry》2007,46(42):11945-11956
The ecto-nucleoside triphosphate diphosphohydrolases or NTPDases are a family of membrane-bound enzymes that catalyze the sequential removal of gamma- and beta-phosphate from ATP, ADP, and other nucleotides. NTPDase1, -2, -3, and -8 are the enzymes responsible for signal conversion and termination in purinergic signaling. They are anchored to the cytoplasmic membrane by two transmembrane helices with a large catalytic domain pointing toward the extracellular space. Here we report the first successful expression and purification of the soluble extracellular domains of rat NTPDase1, -2, and -3 from bacterial inclusion bodies. The refolded proteins show characteristics similar to the wild type enzymes, for example in that they are dependent on divalent metal ions for catalysis and hydrolyze a wide variety of nucleoside tri- and diphosphates, whereas the monophosphate AMP is not further degraded. Nucleoside triphosphates are hydrolyzed at a higher rate than the corresponding diphosphates. Other characteristics of the recombinant enzymes however reflect the absence of transmembrane regions and side chain glycosylation. For example all three enzymes are monomeric and only subtly activated by Mg2+ ions as compared to Ca2+ ions. Although having a considerably higher specificity constant kcat/Km for ADP as for ATP, the bacterially expressed variant of NTPDase1 in contrast to its wild type counterpart releases intermediate ADP to a substantial amount. The presented expression system will allow large scale production of active protein suitable for structural studies, development of inhibitors, and even clinical application.  相似文献   

16.
17.
Gao  Yaohui  Gao  Yike  Wu  Zhiping  Bu  Xianglong  Fan  Min  Zhang  Qixiang 《Plant molecular biology》2019,99(6):587-601
Plant Molecular Biology - The CmTFL1c gene of Chrysanthemum morifolium inhibits flowering, regulates inflorescence architecture and floral development. The timing of flowering is an important...  相似文献   

18.
19.
Bacillus thuringiensis isolates from different ecological regions and sources of China were analyzed to study the distribution and diversity of cry genes and to detect the presence of novel cry genes. Strains containing cry1-type genes were the most abundant and represent 237 of the 310 B. thuringiensis isolates (76.5%). About 70 and 15.5% of the isolates contained a cry2 gene or cry9 gene, respectively, while 10.0% of the strains did not contain a cry1, cry2, or cry9 gene. Among the cry1 containing isolates, cry1A (67.7%), cry1I (60.6%), cry1C (43.9%), and cry1D (39.4%) genes were the most abundant. Forty-three different cry1 gene profiles were detected in this collection. Several cry1 genes were associated at a high frequency, such as the cry1C-cry1D and cry1A-cry1I gene combination. The cry1A and cry2 amplicons were digested with selected restriction enzymes to examine sequence diversity. Based on this RFLP analysis, one novel cry1A-type gene was observed.  相似文献   

20.
CDP-diacylglycerol synthase (CDS) catalyzes the conversion of phosphatidic acid to CDP-diacylglycerol, an important precursor for the synthesis of phosphatidylinositol, phosphatidylglycerol, and cardiolipin. We amplified and sequenced 2,053 bp of the pig CDS1 mRNA. The structure of the pig CDS1 gene was determined, being very similar to that of the human, rat, and mouse genes with respect size and organization of the 13 exons. In addition, we identified three polymorphic positions in exons 10 and 11. One of them, the A/C1006, was genotyped in samples belonging to Iberian, Landrace, Large White, Pietrain, and Meishan pig breeds. Expression of this gene was also analyzed by real-time polymerase chain reaction (PCR) in different tissues showing a high CDS1 expression in testis. Moreover, a 1240-bp fragment of the pig CDS2 mRNA was amplified and sequenced. Finally, the CDS1 and CDS2 genes were physically mapped to porcine chromosomes 8 and 17, respectively, by using the INRA, University of Minnesota porcine Radiation Hybrid panel (IMpRH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号