首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed.  相似文献   

2.
Rapid climate changes are currently driving substantial reorganizations of marine ecosystems around the world. A key question is how these changes will alter the provision of ecosystem services from the ocean, particularly from fisheries. To answer this question, we need to understand not only the ecological dynamics of marine systems, but also human adaptation and feedbacks between humans and the rest of the natural world. In this review, we outline what we have learned from research primarily in continental shelf ecosystems and fishing communities of North America. Key findings are that marine animals are highly sensitive to warming and are responding quickly to changes in water temperature, and that such changes are often happening faster than similar processes on land. Changes in species distributions and productivity are having substantial impacts on fisheries, including through changing catch compositions and longer distances traveled for fishing trips. Conflicts over access to fisheries have also emerged as species distributions are no longer aligned with regulations or catch allocations. These changes in the coupled natural-human system have reduced the value of ecosystem services from some fisheries and risk doing so even more in the future. Going forward, substantial opportunities for more effective fisheries management and operations, marine conservation, and marine spatial planning are likely possible through greater consideration of climate information over time-scales from years to decades.  相似文献   

3.
Timing of squid migration reflects North Atlantic climate variability.   总被引:4,自引:0,他引:4  
The environmental and biotic conditions affecting fisheries for cephalopods are only partially understood. A problem central to this is how climate change may influence population movements by altering the availability of thermal resources. In this study we investigate the links between climate and sea-temperature changes and squid arrival time off southwestern England over a 20-year period. We show that veined squid (Loligo forbesi) migrate eastward in the English Channel earlier when water in the preceding months is warmer, and that higher temperatures and early arrival correspond with warm (positive) phases of the North Atlantic oscillation (NAO). The timing of squid peak abundance advanced by 120-150 days in the warmest years ('early' years) compared with the coldest ('late' years). Furthermore, sea-bottom temperature was closely linked to the extent of squid movement. Temperature increases over the five months prior to and during the month of peak squid abundance did not differ between early and late years, indicating squid responded to temperature changes independently of time of year. We conclude that the temporal variation in peak abundance of squid seen off Plymouth represents temperature-dependent movement, which is in turn mediated by climatic changes associated with the NAO. Such climate-mediated movement may be a widespread characteristic of cephalopod populations worldwide, and may have implications for future fisheries management because global warming may alter both the timing and location of peak population abundance.  相似文献   

4.
A number of explanations have been advanced to account for the increased frequency and intensity at which jellyfish (pelagic cnidarians and ctenophores) blooms are being observed, most of which have been locally directed. Here, we investigate seasonal and inter-annual patterns in abundance and distribution of jellyfish in the North Atlantic Ocean to determine if there have been any system-wide changes over the period 1946–2005, by analysing records of the presence of coelenterates from the Continuous Plankton Recorder (CPR) survey. Peaks in jellyfish abundance are strongly seasonal in both oceanic and shelf areas: oceanic populations have a mid-year peak that is more closely related to peaks in phyto- and zooplankton, whilst the later peak of shelf populations mirrors changes in SST and reflects processes of advection and aggregation. There have been large amplitude cycles in the abundance of oceanic and shelf jellyfish (although not synchronous) over the last 60 years, with a pronounced synchronous increase in abundance in both areas over the last 10 years. Inter-annual variations in jellyfish abundance in oceanic areas are related to zooplankton abundance and temperature changes, but not to the North Atlantic Oscillation or to a chlorophyll index. The long-term inter-annual abundance of jellyfish on the shelf could not be explained by any environmental variables investigated. As multi-decadal cycles and more recent increase in jellyfish were obvious in both oceanic and shelf areas, we conclude that these are likely to reflect an underlying climatic signal (and bottom-up control) rather than any change in fishing pressure (top-down control). Our results also highlight the role of the CPR data in investigating long-term changes in jellyfish, and suggest that the cnidarians sampled by the CPR are more likely to be holoplanktic hydrozoans and not the much larger meroplanktic scyphozoans as has been suggested previously. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

5.
Climate change can affect marine and estuarine fish via alterations to their distributions, abundances, sizes, physiology and ecological interactions, threatening the provision of ecosystem goods and services. While we have an emerging understanding of such ecological impacts to fish, we know little about the potential influence of climate change on the provision of nutritional seafood to sustain human populations. In particular, the quantity, quality and/or taste of seafood may be altered by future environmental changes with implications for the economic viability of fisheries. In an orthogonal mesocosm experiment, we tested the influence of near‐future ocean warming and acidification on the growth, health and seafood quality of a recreationally and commercially important fish, yellowfin bream (Acanthopagrus australis). The growth of yellowfin bream significantly increased under near‐future temperature conditions (but not acidification), with little change in health (blood glucose and haematocrit) or tissue biochemistry and nutritional properties (fatty acids, lipids, macro‐ and micronutrients, moisture, ash and total N). Yellowfin bream appear to be highly resilient to predicted near‐future ocean climate change, which might be facilitated by their wide spatio‐temporal distribution across habitats and broad diet. Moreover, an increase in growth, but little change in tissue quality, suggests that near‐future ocean conditions will benefit fisheries and fishers that target yellowfin bream. The data reiterate the inherent resilience of yellowfin bream as an evolutionary consequence of their euryhaline status in often environmentally challenging habitats and imply their sustainable and viable fisheries into the future. We contend that widely distributed species that span large geographic areas and habitats can be “climate winners” by being resilient to the negative direct impacts of near‐future oceanic and estuarine climate change.  相似文献   

6.
No-take marine reserves can be powerful management tools, but only if they are well designed and effectively managed. We review how ecological guidelines for improving marine reserve design can be adapted based on an area’s unique evolutionary, oceanic, and ecological characteristics in the Gulf of California, Mexico. We provide ecological guidelines to maximize benefits for fisheries management, biodiversity conservation and climate change adaptation. These guidelines include: representing 30% of each major habitat (and multiple examples of each) in marine reserves within each of three biogeographic subregions; protecting critical areas in the life cycle of focal species (spawning and nursery areas) and sites with unique biodiversity; and establishing reserves in areas where local threats can be managed effectively. Given that strong, asymmetric oceanic currents reverse direction twice a year, to maximize connectivity on an ecological time scale, reserves should be spaced less than 50–200 km apart depending on the planktonic larval duration of target species; and reserves should be located upstream of fishing sites, taking the reproductive timing of focal species in consideration. Reserves should be established for the long term, preferably permanently, since full recovery of all fisheries species is likely to take?>?25 years. Reserve size should be based on movement patterns of focal species, although marine reserves?>?10 km long are likely to protect?~?80% of fish species. Since climate change will affect species’ geographic range, larval duration, growth, reproduction, abundance, and distribution of key recruitment habitats, these guidelines may require further modifications to maintain ecosystem function in the future.  相似文献   

7.

The Northern Mozambique Channel (NMC) is a tropical area of ~?1 million km2 where pelagic fisheries supply proteins to more than 9 million people living in Comoros, Mayotte, and along the coasts of Mozambique, Tanzania and Madagascar. Although uncertain, statistics suggest that about 20,000 mt of tropical tuna and other pelagic fish are annually caught by artisanal fisheries in the area. The NMC is also a major seasonal fishing ground for high-seas fleets that export an annual average catch of more than 20,000 mt to tuna can and sashimi markets of high-income countries for a value estimated to be more than 100 million USD. The fisheries productivity of the NMC appears to be highly variable in relation to strong annual and seasonal variability in oceanographic conditions. Our review shows that the NMC is a key feeding area for tropical tunas and a major spawning area for skipjack tuna thanks to warm waters and strong mesoscale activity that results in the enrichment of surface waters and efficient energy transfers enabled by short food chains. Projections of climate models under future warming scenarios predict some strong changes in the oceanographic conditions of the NMC which has already experienced substantial warming over the last decades. Changes in the pelagic ecosystem of the NMC could have dramatic consequences on the coastal populations that are expected to increase towards 100 million people by 2100. Improving monitoring systems and collecting information on the socio-economics of coastal fisheries is crucial to assess the dependence of NMC populations on tuna resources and empower the countries to more involvement in the management of tuna stocks.

  相似文献   

8.
In the early 1990s, the Northwest Atlantic Ocean underwent a fisheries‐driven ecosystem shift. Today, the iconic cod (Gadus morhua) remains at low levels, while Atlantic halibut (Hippoglossus hippoglossus) has been increasing since the mid‐2000s, concomitant with increasing interest from the fishing industry. Currently, our knowledge about halibut ecology is limited, and the lack of recovery in other collapsed groundfish populations has highlighted the danger of overfishing local concentrations. Here, we apply a Bayesian hierarchical spatiotemporal approach to model the spatial structure of juvenile Atlantic halibut over 36 years and three fisheries management regimes using three model parameters to characterize the resulting spatiotemporal abundance structure: persistence (similarity of spatial structure over time), connectivity (coherence of temporal pattern over space), and spatial variance (variation across the seascape). Two areas of high juvenile abundance persisted through three decades whereas two in the northeast are now diminished, despite the increased abundance and landings throughout the management units. The persistent areas overlap with full and seasonal area closures, which may act as refuges from fishing. Connectivity was estimated to be 250 km, an order of magnitude less than the distance assumed by the definition of the Canadian management units (~2,000 km). The underlying question of whether there are distinct populations within the southern stock unit cannot be answered with this model, but the smaller ~250 km scale of coherent temporal patterns suggests more complex population structure than previously thought, which should be taken into consideration by fishery management.  相似文献   

9.
The Baltic Sea is a large brackish semienclosed sea whose species-poor fish community supports important commercial and recreational fisheries. Both the fish species and the fisheries are strongly affected by climate variations. These climatic effects and the underlying mechanisms are briefly reviewed. We then use recent regional – scale climate – ocean modelling results to consider how climate change during this century will affect the fish community of the Baltic and fisheries management. Expected climate changes in northern Europe will likely affect both the temperature and salinity of the Baltic, causing it to become warmer and fresher. As an estuarine ecosystem with large horizontal and vertical salinity gradients, biodiversity will be particularly sensitive to changes in salinity which can be expected as a consequence of altered precipitation patterns. Marine-tolerant species will be disadvantaged and their distributions will partially contract from the Baltic Sea; habitats of freshwater species will likely expand. Although some new species can be expected to immigrate because of an expected increase in sea temperature, only a few of these species will be able to successfully colonize the Baltic because of its low salinity. Fishing fleets which presently target marine species (e.g. cod, herring, sprat, plaice, sole) in the Baltic will likely have to relocate to more marine areas or switch to other species which tolerate decreasing salinities. Fishery management thresholds that trigger reductions in fishing quotas or fishery closures to conserve local populations (e.g. cod, salmon) will have to be reassessed as the ecological basis on which existing thresholds have been established changes, and new thresholds will have to be developed for immigrant species. The Baltic situation illustrates some of the uncertainties and complexities associated with forecasting how fish populations, communities and industries dependent on an estuarine ecosystem might respond to future climate change.  相似文献   

10.
Altered river flows and fragmented habitats often simplify riverine communities and favor non‐native fishes, but their influence on life‐history expression and survival is less clear. Here, we quantified the expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered California river system. We analyzed two decades of Chinook salmon monitoring data to explore the influence of regulated flows on juvenile emigration phenology, abundance, and recruitment. We then followed seven cohorts into adulthood using otolith (ear stone) chemical archives to identify patterns in time‐ and size‐selective mortality along the migratory corridor. Suppressed winter flow cues were associated with delayed emigration timing, particularly in warm, dry years, which was also when selection against late migrants was the most extreme. Lower, less variable flows were also associated with reduced juvenile and adult production, highlighting the importance of streamflow for cohort success in these southernmost populations. While most juveniles emigrated from the natal stream as fry or smolts, the survivors were dominated by the rare few that left at intermediate sizes and times, coinciding with managed flows released before extreme summer temperatures. The consistent selection against early (small) and late (large) migrants counters prevailing ecological theory that predicts different traits to be favored under varying environmental conditions. Yet, even with this weakened portfolio, maintaining a broad distribution in migration traits still increased adult production and reduced variance. In years exhibiting large fry pulses, even marginal increases in their survival would have significantly boosted recruitment. However, management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability. To recover fish populations and support viable fisheries in a warming and increasingly unpredictable climate, coordinating flow and habitat management within and among watersheds will be critical to balance trait optimization versus diversification.  相似文献   

11.
We used cultural consensus models to test whether hunters shared perceptions of wildlife abundance and the relative importance of hunting and fishing in a Guarayo indigenous community in the Bolivian Amazon. Results show that highly prized animals that were considered rare are either those with lower reproductive rates and more sensitivity to land use changes and harvest (white-lipped peccary and spider monkey) or those with marked seasonal distribution patterns (barred sorubim and tiger-fish). Rapidly reproducing and resilient species (agouti and armored catfish) were perceived as abundant. More tapirs and red brocket deer were present than predicted by scientific models possibly because hunters were harvesting these species in new forest management areas. Residents identified hunting and fishing among their most important livelihood activities, recognized bush meat and fish as basic food resources, and expected wildlife harvests to be part of their future livelihoods, although market-based livelihoods and domestic replacements for bush meat were reported.  相似文献   

12.
Many deep-water fish populations, being K-selected species, have little resilience to overexploitation and may be at serious risk of depletion as a consequence. Sea warming represents an additional threat. In this study, the condition, or health, of several populations of common ling (Molva molva), blue ling (Molva dypterygia) and Mediterranean or Spanish ling (Molva macrophthalma) inhabiting different areas in the North Atlantic and the Mediterranean was evaluated, to shed light on the challenges these deep-water species are facing in the context of fishing activity and a warming climate. The data on the condition of Molva populations which are analysed here have been complemented with data on abundance and, for the southernmost species (Mediterranean ling), with two other health indicators (parasitism and hepato-somatic index). Despite some exceptions (e.g., common ling in Icelandic waters), this study shows that the condition of many populations of Molva species in the northeastern Atlantic and the Mediterranean Sea has worsened, a trend which, in recent decades, has usually been found to be accompanied by a decline in their abundance. In addition, the poor health status of most populations of common ling, blue ling and Mediterranean ling considered in this analysis points to a lower sustainability of these populations in the future. Overall, the health status and abundance of Molva populations in the northeastern Atlantic and the Mediterranean suggest that only some populations located in the North Atlantic may be able to rebuild, whereas the populations in southern North Atlantic and the Mediterranean, which are probably most at risk from sea warming, are facing serious difficulties in doing so. In the context of fisheries and global warming, this study's results strongly indicate that management bodies need to consider the health status of many of the populations of Molva species, particularly in southern European waters, before implementing their decisions.  相似文献   

13.
Harvest of Brazil nuts from the large, iconic tree Bertholletia excelsa generates substantial income for smallholders, providing a strong incentive to conserve the mature forests where it grows. Although much previous work has focused on the impact of nut harvest on new seedling recruits into B. excelsa populations, the connection between harvest rates and long‐term population stability is still unclear. Moreover, there is additional uncertainty for Brazil nut management in terms of population response to climate change and other anthropogenic influences. We drew on 14 years of research in two sites in Acre, Brazil with different B. excelsa nut harvest intensities (39% and 81%), to produce stochastic and deterministic matrix population models which incorporated parameter uncertainty in vital rates. Adult abundance was projected to remain close to the current observed abundance or higher through the next 50 years. Elasticity analyses revealed that the asymptotic population growth rate (λ) was most sensitive to stasis vital rates in sapling, juvenile, and adult stages. Deterministic transition matrices calculated using diameter growth rates dependent on rainfall yielded average λ values around 1.0 under extreme high, extreme low, and average annual rainfall. While sustained high rates of Brazil nut harvest and climate change could potentially negatively impact B. excelsa populations, changes in human use of the forested landscape are more immediate concern. To reduce the risk of population decline, smallholders and managers of B. excelsa rich forests should focus on conservation of pre‐mature and mature individuals.  相似文献   

14.
Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ~10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and feasibility of considering evolutionary processes, in addition to ecology and demography, when projecting population responses to environmental change.  相似文献   

15.
Understanding changes in the migratory and reproductive phenology of fish stocks in relation to climate change is critical for accurate ecosystem‐based fisheries management. Relocation and changes in timing of reproduction can have dramatic effects upon the success of fish populations and throughout the food web. During anomalously warm conditions (1–4°C above normal) in the northeast Pacific Ocean during 2015–2016, we documented shifts in timing and spawning location of several pelagic fish stocks based on larval fish samples. Total larval concentrations in the northern California Current (NCC) during winter (January–March) 2015 and 2016 were the highest observed since annual collections first occurred in 1998, primarily due to increased abundances of Engraulis mordax (northern anchovy) and Sardinops sagax (Pacific sardine) larvae, which are normally summer spawning species in this region. Sardinops sagax and Merluccius productus (Pacific hake) exhibited an unprecedented early and northward spawning expansion during 2015–16. In addition, spawning duration was greatly increased for E. mordax, as the presence of larvae was observed throughout the majority of 2015–16, indicating prolonged and nearly continuous spawning of adults throughout the warm period. Larvae from all three of these species have never before been collected in the NCC as early in the year. In addition, other southern species were collected in the NCC during this period. This suggests that the spawning phenology and distribution of several ecologically and commercially important fish species dramatically and rapidly changed in response to the warming conditions occurring in 2014–2016, and could be an indication of future conditions under projected climate change. Changes in spawning timing and poleward migration of fish populations due to warmer ocean conditions or global climate change will negatively impact areas that were historically dependent on these fish, and change the food web structure of the areas that the fish move into with unforeseen consequences.  相似文献   

16.
Populations may potentially respond to climate change in various ways including moving to new areas or alternatively staying where they are and adapting as conditions shift. Traditional laboratory and mesocosm experiments last days to weeks and thus only give a limited picture of thermal adaptation, whereas ocean warming occurring over decades allows the potential for selection of new strains better adapted to warmer conditions. Evidence for adaptation in natural systems is equivocal. We used a 50‐year time series comprising of 117 056 samples in the NE Atlantic, to quantify the abundance and distribution of two particularly important and abundant members of the ocean plankton (copepods of the genus Calanus) that play a key trophic role for fisheries. Abundance of C. finmarchicus, a cold‐water species, and C. helgolandicus, a warm‐water species, were negatively and positively related to sea surface temperature (SST) respectively. However, the abundance vs. SST relationships for neither species changed over time in a manner consistent with thermal adaptation. Accompanying the lack of evidence for thermal adaptation there has been an unabated range contraction for C. finmarchicus and range expansion for C. helgolandicus. Our evidence suggests that thermal adaptation has not mitigated the impacts of ocean warming for dramatic range changes of these key species and points to continued dramatic climate induced changes in the biology of the oceans.  相似文献   

17.
The reduction of game and fish populations has increased investment in management practices. Hunting and fishing managers use several tools to maximize harvest. Managers need to know the impact their management has on wild populations. This issue is especially important to improve management efficacy and biodiversity conservation. We used questionnaires and field bird surveys in 48 hunting estates to assess whether red-legged partridge Alectoris rufa young/adult ratio and summer abundance were related to the intensity of management (provision of supplementary food and water, predator control and releases of farm-bred partridges), harvest intensity or habitat in Central Spain. We hypothesized that partridge abundance would be higher where management practices were applied more intensively. Variation in young/adult ratio among estates was best explained by habitat, year and some management practices. Density of feeders and water points had a positive relationship with this ratio, while the density of partridges released and magpies controlled were negatively related to it. The variables with greatest relative importance were feeders, releases and year. Variations in post-breeding red-legged partridge abundance among estates were best explained by habitat, year, the same management variables that influenced young/adult ratio, and harvest intensity. Harvest intensity was negatively related to partridge abundance. The other management variables had the same type of relationship with abundance as with young/adult ratio, except magpie control. Variables with greatest relative importance were habitat, feeders, water points, releases and harvest intensity. Our study suggests that management had an overall important effect on post-breeding partridge abundance. However, this effect varied among tools, as some had the desired effect (increase in partridge abundance), whereas others did not or even had a negative relationship (such as release of farm-reared birds) and can be thus considered inefficient or even detrimental. We advise reconsidering their use from both ecological and economical points of view.  相似文献   

18.
Complex seasonal patterns of primary producers at the land-sea interface   总被引:1,自引:0,他引:1  
Cloern JE  Jassby AD 《Ecology letters》2008,11(12):1294-1303
Seasonal fluctuations of plant biomass and photosynthesis are key features of the Earth system because they drive variability of atmospheric CO2, water and nutrient cycling, and food supply to consumers. There is no inventory of phytoplankton seasonal cycles in nearshore coastal ecosystems where forcings from ocean, land and atmosphere intersect. We compiled time series of phytoplankton biomass (chlorophyll a) from 114 estuaries, lagoons, inland seas, bays and shallow coastal waters around the world, and searched for seasonal patterns as common timing and amplitude of monthly variability. The data revealed a broad continuum of seasonal patterns, with large variability across and within ecosystems. This contrasts with annual cycles of terrestrial and oceanic primary producers for which seasonal fluctuations are recurrent and synchronous over large geographic regions. This finding bears on two fundamental ecological questions: (1) how do estuarine and coastal consumers adapt to an irregular and unpredictable food supply, and (2) how can we extract signals of climate change from phytoplankton observations in coastal ecosystems where local‐scale processes can mask responses to changing climate?  相似文献   

19.
Once extirpated from much of their North American range, temperate-breeding Canada geese (Branta canadensis maxima) have reached high abundance. As a result, focus has shifted from restoration to managing harvest and addressing human-goose conflict. Conflict persists or is increasing in urban areas throughout the Mississippi Flyway. Managers need more information regarding demographic rates to determine how hunting affects geese breeding in urban areas and what management actions may be required to achieve management goals. We estimated survival, dead recovery, live recapture, and fidelity probabilities using data from 77,872 Canada geese banded in Iowa, USA, during 1999–2019 using Burnham joint live-dead band recovery models. Factors predicted to affect parameters in candidate models included age (juvenile, subadult, adult), banding site (urban, rural), time, trend, harvest regulation index, and winter severity index. We predicted Canada geese banded in urban areas would have higher survival and lower dead recovery rates than geese banded at rural sites. The top model indicated support for age and banding site effects, and trends in survival and recovery rate (Brownie parameterization). Adult survival was similar for urban (0.75; range = 0.60–0.92) and rural (0.75; range = 0.66–0.82) geese and relatively constant across years. Mean juvenile survival was lower in urban (0.74; range = 0.48–0.93) than rural (0.85; range = 0.68–0.92) areas. Survival increased for urban-banded juveniles and recovery rates increased during liberalization of harvest regulations and decreased after regulations stabilized. Recovery rates of subadults increased for the urban and rural groups. Our results suggest Canada geese breeding in urban areas contribute to harvest and specialized regulations can affect these populations. Harvest regulations in place during our analysis may not have reached a threshold required to observe substantial changes in survival. Current human-goose conflict in urban areas suggests survival has not decreased to a level required to completely address conflict via reduction in goose abundance. Managers may consider additional liberalization of harvest regulations and monitoring via banding to determine to what degree hunter harvest contributes to reducing human-goose conflict and what additional management actions will be required to achieve goals. © 2020 The Wildlife Society.  相似文献   

20.
Understanding the mechanisms by which climate change will affect animal populations is vital for adaptive management. Many studies have described changes in the timing of biological events, which can produce phenological mismatch. Direct effects on prey abundance might also be important, but have rarely been studied. We examine the likely importance of variation in prey abundance in driving the demographics of a European golden plover ( Pluvialis apricaria ) population at its southern range margin. Previous studies have correlated plover productivity with the abundance of their adult cranefly (Tipulidae) prey, and modelled the phenology of both plover breeding and cranefly emergence in relation to temperature. Our analyses demonstrate that abundance of adult craneflies is correlated with August temperature in the previous year. Correspondingly, changes in the golden plover population are negatively correlated with August temperature 2 years earlier. Predictions of annual productivity, based on temperature-mediated reductions in prey abundance, closely match observed trends. Modelled variation in annual productivity for a future scenario of increasing August temperatures predicts a significant risk of extinction of the golden plover population over the next 100 years, depending upon the magnitude of warming. Direct effects of climate warming upon cranefly populations may therefore cause northward range contractions of golden plovers, as predicted by climate envelope modelling. Craneflies are an important food source for many northern and upland birds, and our results are likely to have wide relevance to these other species. Research into the potential for habitat management to improve the resilience of cranefly populations to high temperature should be an urgent priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号