首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbate content in plants is controlled by its synthesis from carbohydrates, recycling of the oxidized forms and degradation. Of these pathways, ascorbate degradation is the least studied and represents a lack of knowledge that could impair improvement of ascorbate content in fruits and vegetables as degradation is non‐reversible and leads to a depletion of the ascorbate pool. The present study revealed the nature of degradation products using [14C]ascorbate labelling in tomato, a model plant for fleshy fruits; oxalate and threonate are accumulated in leaves, as is oxalyl threonate. Carboxypentonates coming from diketogulonate degradation were detected in relatively insoluble (cell wall‐rich) leaf material. No [14C]tartaric acid was found in tomato leaves. Ascorbate degradation was stimulated by darkness, and the degradation rate was evaluated at 63% of the ascorbate pool per day, a percentage that was constant and independent of the initial ascorbate or dehydroascorbic acid concentration over periods of 24 h or more. Furthermore, degradation could be partially affected by the ascorbate recycling pathway, as lines under‐expressing monodehydroascorbate reductase showed a slight decrease in degradation product accumulation.  相似文献   

2.
The rate of (13)C-label incorporation into both aspartyl (NAA C3) and acetyl (NAA C6) groups of N-acetyl aspartate (NAA) was simultaneously measured in the rat brain in vivo for up to 19 h of [1-(13)C]glucose infusion (n = 8). Label incorporation was detected in NAA C6 approximately 1.5 h earlier than in NAA C3 because of the delayed labeling of the precursor of NAA C3, aspartate, compared to that of NAA C6, glucose. The time courses of NAA were fitted using a mathematical model assuming synthesis of NAA in one kinetic compartment with the respective precursor pools of aspartate and acetyl coenzyme A (acetyl-CoA). The turnover rates of NAA C6 and C3 were 0.7 +/- 0.1 and 0.6 +/- 0.1 micromol/(g h) with the time constants 14 +/- 2 and 13 +/- 2 h, respectively, with an estimated pool size of 8 micromol/g. The results suggest that complete label turnover of NAA from glucose occurs in approximately 70 h. Several hours after starting the glucose infusion, label incorporation into glutathione (GSH) was also detected. The turnover rate of GSH was 0.06 +/- 0.02 micromol/(g h) with a time constant of 13 +/- 2 h. The estimated pool size of GSH was 0.8 micromol/g, comparable to the cortical glutathione concentration. We conclude that NAA and GSH are completely turned over and that the metabolism is extremely slow (< 0.05% of the glucose metabolic rate).  相似文献   

3.
(1) The metabolism of stearic acid was studied in vivo following intratesticular injection of [1-14C] stearate. Soon after injection 14C activity was found mainly in the free fatty acid pool. This was followed at later time periods by transfer of label primarily to the phosphatide pool. During each time period significant amounts of label were recovered at 14CO2. (2) Analysis of 14C-labeled fatty acids from the injected testes demonstrated an initial rapid rate of oxidation and desaturation of [1-14C] stearate followed by a slower steady state rate. It was concluded that the initial rate was due to the rapid turnover of the highly labeled free fatty acid pool followed by a much slower rate as [14C] stearate was esterified to the more metabolically stable phospholipids. Elongation of the labeled stearic or its desaturated derivative was not observed. (3) The rate of desaturation in vitro of stearic acid was measured in microsomal preparations from rat testes and found to be 12.0 +/- 0.5 pmol/min/mg compared to the estimated in vivo value of 22 pmol/min/mg and the value of 390 pmol/min/mg for hepatic microsomal desaturase.  相似文献   

4.
Changes in ascorbate and glutathione contents and the activities and isoenzyme patterns of enzymes of the ascorbate-glutathione cycle were investigated in embryo axes and cotyledons of germinating lupine (Lupinus luteus L.) seeds. Ascorbate content was not significantly affected over the initial 12 h of imbibition in embryo axes, but afterwards increased, with the most rapid accumulation coinciding with radicle emergence. A somewhat similar trend was observed for glutathione with significant increase in embryo axes shortly before radicle protrusion followed by decline in the next hours. In cotyledons the ascorbate pool rose gradually during germination but the amount of glutathione showed fluctuations during a whole germination period. The activity of ascorbate peroxidase (APX) rose progressively in embryo axes, while activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) showed transient increase during germination. New isoforms of APX and GR were synthesized, suggesting that they play a relevant role during germination. All analyzed enzymes were already present in dry seeds which allowed them to be active immediately after imbibition.  相似文献   

5.
6.
Ascorbate levels and redox state, as well as the activities of the ascorbate related enzymes, have been analysed both in the apoplastic and symplastic spaces of etiolated pea (Pisum sativum L.) shoots during cellular differentiation. The ascorbate pool and the ascorbate oxidizing enzymes, namely ascorbate oxidase and ascorbate peroxidase, were present in both pea apoplast and symplast, whereas ascorbate free radical reductase and dehydroascorbate reductase were only present in the symplastic fractions. During cell differentiation the ascorbate redox enzymes changed in different ways, since a decrease in ascorbate levels, ascorbate peroxidase and ascorbate free radical reductase occurred from meristematic to differentiated cells, whereas ascorbate oxidase and dehydroascorbate reductase increased. The activity of secretory peroxidases has also been followed in the apoplast of meristematic and differentiating cells. These peroxidases increased their activity during differentiation. This behaviour was accompanied by changes in their isoenzymatic profiles. The analysis of the kinetic characteristics of the different peroxidases present in the apoplast suggests that the presence of ascorbate and ascorbate peroxidase in the cell wall could play a critical role in regulating the wall stiffening process during cell differentiation by interfering with the activity of secretory peroxidases.  相似文献   

7.
Isolated adrenal cells from Vitamin E-deficient and control rats were prepared by a trypsin digestion method. Cyclic adenosine 3',5'-monophosphate (cyclic AMP) formation was studied in response to adrenocorticotropin (ACTH) in the presence and absence of ascorbate by measuring the conversion of prelabeled adenosine 5'-triphosphate [14C]ATP to cyclic [14C]AMP. Ascorbate (0.5 mM) inhibited ACTH-induced cyclic [14C]AMP formation in adrenal cells isolated from Vitamin E-deficient rats but had no effect in the control cells. The inhibitory effect of ascorbate on ACTH-induced cyclic AMP formation in Vitamin E-deficient rats decreased as the concentration of ACTH increased. In Vitamin E-deficient rats ascorbate inhibited ACTH-induced cyclic [14C]AMP formation after 30 min of incubation. There was no further significant accumulation of cyclic [14C]AMP at 60 min or 120 min although in the absence of ascorbate cyclic [14C]AMP continued to be formed. The in vitro addition of alpha-tocopherol reduced the inhibition of ACTH-induced cyclic [14C]AMP formation by ascorbate in Vitamin E-deficient rats. These studies suggest that alpha-tocopherol and ascorbate may affect ACTH-induced cyclic AMP formation through interaction with the membrane-bound enzyme adenylate cyclase.  相似文献   

8.
Grace SC  Logan BA 《Plant physiology》1996,112(4):1631-1640
The protective role of leaf antioxidant systems in the mechanism of plant acclimation to growth irradiance was studied in Vinca major, Schefflera arboricola, and Mahonia repens, which were grown for several months at 20, 100, and 1200 [mu]mol photons m-2 s-1. As growth irradiance increased, several constituents of the "Mehler-peroxidase" pathway also increased: superoxide dismutase, ascorbate peroxidase, glutathione reductase, ascorbate, and glutathione. This occurred concomitantly with increases in the xanthophyll cycle pool size and in the rate of nonphotochemical energy dissipation under steady-state conditions. There was no evidence for photosystem II overreduction in plants grown at high irradiance, although the reduction state of the stromal NADP pool, estimated from measurements of NADP-malate dehydrogenase activity, was greater than 60% in V. major and S. arboricola. Ascorbate, which removes reactive O2 species generated by O2 photoreduction in the chloroplast and serves as a reductant for the conversion of the xanthophyll cycle pigments to the de-epoxidized forms A plus Z, generally exhibited the most dramatic increases in response to growth irradiance. We conclude from these results that O2 photoreduction occurs at higher rates in leaves acclimated to high irradiance, despite increases in xanthophyll cycle-dependent energy dissipation, and that increases in leaf antioxidants protect against this potential oxidative stress.  相似文献   

9.
Ascorbic acid donates electrons to dopamine beta-monooxygenase during the hydroxylation of dopamine to norepinephrine in vitro. However, the possible role of ascorbic acid in norepinephrine biosynthesis in vivo has not been defined. We therefore investigated the effect of newly accumulated ascorbic acid on catecholamine biosynthesis in cultured bovine adrenal chromaffin cells. Cells supplemented for 3 h with ascorbic acid accumulated 9-fold more ascorbic acid than found in control cells. Under these conditions, the cells loaded with ascorbate were found to double the rate of norepinephrine biosynthesis from [14C]tyrosine compared to control. By contrast, the amounts present of [14C] 3,4-dihydroxyphenylalanine and [14C]dopamine synthesized from [14C]tyrosine were unaffected by the preloading of ascorbic acid. Ascorbate preloaded cells incubated with [3H]dopamine also showed a similar increase in the rate of norepinephrine formation, without any change in dopamine transport into the cells. Thus, these data were consistent with ascorbate action at the dopamine beta-monooxygenase step. In order to determine if ascorbate could interact directly with dopamine beta-monooxygenase localized within chromaffin granules, we studied whether isolated chromaffin granules could accumulate ascorbic acid. Ascorbic acid was not transported into chromaffin granules by an uptake or exchange process, despite coincident [3H]dopamine uptake which was Mg-ATP dependent. These data indicate that ascorbic acid does augment norepinephrine biosynthesis in intact chromaffin cells, but by a mechanism that might enhance the rate of dopamine hydroxylation indirectly.  相似文献   

10.
Anaerobic metabolism of immediate methane precursors in Lake Mendota.   总被引:10,自引:10,他引:0       下载免费PDF全文
Lake Mendota sediments and the immediate overlying water column were studied to better understand the metabolism of the methanogenic precursors H2/CO2 and acetate in nature. The pool size of acetate (3.5 microns M) was very small, and the acetate turnover time (0.22h) was very rapid. The dissolved inorganic carbon pool was shown to be large (6.4 to 8.3 mM), and the turnover time was slow (111 H.). CO2 was shown to account for 41 +/- 5.5% of the methane produced in sediment. Acetate and H2/CO2 were simultaneously converted to CH4. The addition of H2 to sediments resulted in an increase specific activity of CH4 from H(14)CO3- and a decrease in specific activity of CH4 from [2-14C]acetate. Acetate addition resulted in a decrease in specific activity of CH4 from H(14)CO3-. The metabolism of H(14)CO3- or [2-14C]acetate to 14CH4 was not inhibited by addition of acetate or H2. After greater than 99% of added [2-14C]acetate had been turned over, 42% of the label was recovered as 14CH4 20% was recovered as 14CO2 and 38% was incorporated into sediment. Inhibitor studies of [2-14C]acetate metabolism in sediments demonstrated that CHCl3 completely inhibited CH4 formation, but not CO2 production. Air and nitrate addition inhibited CH4 formation and stimulated CO2 production, whereas fluoroacetate addition totally inhibited acetate metabolism. The oxidation of [2-14C]acetate to 14CO2 was shown to decrease with time when sediment was incubated before the addition of label, suggesting depletion of low levels of an endogenous sediment electron acceptor. Acetate metabolism varied seasonally and was related to the concentration of sulfate in the lake and interstitial water. Methanogenesis occurred in the sediment and in the water immediately overlying the sediment during period of lake stratification and several centimeters below the sediment-water interface during lake turnovers. These data indicate that methanogenesis in Lake Mendota sediments was limited by "immediate" methane precursor availability (i.e., acetate and H2), by competition for these substrates by nonmethanogens, and by seasonal variations which altered sediment and water chemistry.  相似文献   

11.
Anaerobic metabolism of immediate methane precursors in Lake Mendota.   总被引:8,自引:0,他引:8  
Lake Mendota sediments and the immediate overlying water column were studied to better understand the metabolism of the methanogenic precursors H2/CO2 and acetate in nature. The pool size of acetate (3.5 microns M) was very small, and the acetate turnover time (0.22h) was very rapid. The dissolved inorganic carbon pool was shown to be large (6.4 to 8.3 mM), and the turnover time was slow (111 H.). CO2 was shown to account for 41 +/- 5.5% of the methane produced in sediment. Acetate and H2/CO2 were simultaneously converted to CH4. The addition of H2 to sediments resulted in an increase specific activity of CH4 from H(14)CO3- and a decrease in specific activity of CH4 from [2-14C]acetate. Acetate addition resulted in a decrease in specific activity of CH4 from H(14)CO3-. The metabolism of H(14)CO3- or [2-14C]acetate to 14CH4 was not inhibited by addition of acetate or H2. After greater than 99% of added [2-14C]acetate had been turned over, 42% of the label was recovered as 14CH4 20% was recovered as 14CO2 and 38% was incorporated into sediment. Inhibitor studies of [2-14C]acetate metabolism in sediments demonstrated that CHCl3 completely inhibited CH4 formation, but not CO2 production. Air and nitrate addition inhibited CH4 formation and stimulated CO2 production, whereas fluoroacetate addition totally inhibited acetate metabolism. The oxidation of [2-14C]acetate to 14CO2 was shown to decrease with time when sediment was incubated before the addition of label, suggesting depletion of low levels of an endogenous sediment electron acceptor. Acetate metabolism varied seasonally and was related to the concentration of sulfate in the lake and interstitial water. Methanogenesis occurred in the sediment and in the water immediately overlying the sediment during period of lake stratification and several centimeters below the sediment-water interface during lake turnovers. These data indicate that methanogenesis in Lake Mendota sediments was limited by "immediate" methane precursor availability (i.e., acetate and H2), by competition for these substrates by nonmethanogens, and by seasonal variations which altered sediment and water chemistry.  相似文献   

12.
Glucose metabolism in the developing rat. Studies in vivo   总被引:10,自引:10,他引:0  
1. The specific radioactivity of plasma d-glucose and the incorporation of (14)C into plasma l-lactate, liver glycogen and skeletal-muscle glycogen was measured as a function of time after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into newborn, 2-, 10- and 30-day-old rats. 2. The log of the specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the 2-, 10- and 30-day-old rats decreased linearly with time for at least 60min after injection of labelled glucose. The specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the newborn rat remained constant for at least 75min after injection. 3. The glucose turnover rate of the 30-day-old rat was significantly greater than (approximately twice) that of the 2- and 10-day-old rats. The relative size of both the glucose pool and the glucose space decreased with age. Less than 10% of the glucose utilized in the 2-, 10- and 30-day-old rats was recycled via the Cori cycle. 4. The results are discussed in relationship to the availability of dietary glucose and other factors that may influence glucose metabolism in the developing rat.  相似文献   

13.
Isolated adrenal cells from Vitamin E-deficient and control rats were prepared by a trypsin digestion method. Cyclic adenosine 3′,5′-monophosphate (cyclic AMP) formation was studied in response to adrenocorticotropin (ACTH) in the presence and absence of ascorbate by measuring the conversion of prelabeled adenosine 5′-triphosphate [14C]ATP to cyclic [14C]AMP. Ascorbate (0.5 mM) inhibited ACTH-induced cyclic [14C]AMP formation in adrenal cells isolated from Vitamin E-deficient rats but had no effect in the control cells. The inhibitory effect of ascorbate on ACTH-induce cyclic AMP formation in Vitamin E-deficient rats decreased as the concentration of ACTH increased. In Vitamin E-deficient rats ascorbate inhibited ACTH-induced cyclic [14C]AMP formation after 30 min of incubation. There was no further significant accumulation of cyclic [14C]AMP at 60 min or 120 min although in the absence of ascorbate cyclic [14C]AMP continued to be formed. The in vitro addition of α-tocopherol reduced the inhibition of ACTH-induced cyclic [14C]AMP formation by ascorbate in Vitamin E-deficient rats.These studies suggest that α-tocopherol and ascorbate may affect ACTH-induced cyclic AMP formation through interaction with membrane-bound enzyme adenylate cyclase.  相似文献   

14.
To determine the biosynthetic pathway to trigonelline, the metabolism of [carboxyl-(14)C]nicotinate mononucleotide (NaMN) and [carboxyl-(14)C]nicotinate riboside (NaR) in protein extracts and tissues of embryonic axes from germinating mungbeans (Phaseolus aureus) was investigated. In crude cell-free protein extracts, in the presence of S-adenosyl-L-methionine, radioactivity from [(14)C]NaMN was incorporated into NaR, nicotinate and trigonelline. Activities of NaMN nucleotidase, NaR nucleosidase and trigonelline synthase were also observed in the extracts. Exogenously supplied [(14)C]NaR, taken up by embryonic axes segments, was readily converted to nicotinate and trigonelline. It is concluded that the NaMN-->NaR-->nicotinate-->trigonelline pathway is operative in the embryonic axes of mungbean seedlings. This result suggests that trigonelline is synthesised not only from NAD but also via the de novo biosynthetic pathway of pyridine nucleotides.  相似文献   

15.
In this study, we investigated seed and auxin regulation of gibberellin (GA) biosynthesis in pea (Pisum sativum L.) pericarp tissue in situ, specifically the conversion of [14C]GA19 to [14C]GA20. [14C]GA19 metabolism was monitored in pericarp with seeds, deseeded pericarp, and deseeded pericarp treated with 4-chloroindole-3-acetic acid (4-CI-IAA). Pericarp with seeds and deseeded pericarp treated with 4-CI-IAA continued to convert [14C]GA19 to [14C]GA20 throughout the incubation period (2-24 h). However, seed removal resulted in minimal or no accumulation of [14C]GA20 in pericarp tissue. [14C]GA29 was also identified as a product of [14C]GA19 metabolism in pea pericarp. The ratio of [14C]GA29 to [14C]GA20 was significantly higher in deseeded pericarp (with or without exogenous 4-CI-IAA) than in pericarp with seeds. Therefore, conversion of [14C]GA20 to [14C]GA29 may also be seed regulated in pea fruit. These data support the hypothesis that the conversion of GA19 to GA20 in pea pericarp is seed regulated and that the auxin 4-CI-IAA can substitute for the seeds in the stimulation of pericarp growth and the conversion of GA19 to GA20.  相似文献   

16.
D M Dunn  C Franzblau 《Biochemistry》1982,21(18):4195-4202
Cultured pulmonary artery smooth muscle cells derived from the medial vessel layer of weanling rabbits were grown in the presence or absence of sodium ascorbate. The connective tissue elements insoluble elastin and collagen were identified and quantified. Formation and accumulation of alpha-aminoadipic acid gamma-semialdehyde (allysine) and the intermolecular cross-links desmosine (Des), isodesmosine (Ides), and aldol condensation product (Aldol) were evaluated from [14C]lysine pulse-chase experiments. [14C]Des, [14C]Ides, peptide-bound [14C]lysine, [14C]allysine, and [14C]Aldol were determined from amino acid analysis. The latter two components were determined after reduction with NaBH4. [14C]Proline conversion to hydroxy[14C]proline and collagenase susceptibility were used to identify and quantify collagen synthesis. Ascorbate dramatically affects insoluble elastin synthesis, accumulation, and cross-link formation. Cells grown in the presence of ascorbate synthesize and accumulate significantly less insoluble elastin than non-ascorbate cultures. Those elastin molecules which do become incorporated into the extracellular matrix in the presence of ascorbate contain a slightly elevated content of hydroxyproline and lysine and, most importantly, are turned over more rapidly.  相似文献   

17.
To study the metabolism of cholestanol in patients with cerebrotendinous xanthomatosis (CTX), we measured the cholestanol absorption, the cholesterol and cholestanol turnover, and the tissue content of sterols in two patients. Cholestanol absorption was approximately 5.0%. The rapid exchangeable pool of cholestanol was 233 mg, and the total exchangeable pool was 752 mg. The production rate of cholestanol in pool A was 39 mg/day. [4-14C]cholestanol was detected in the xanthomas, but neither [4-14C]cholestanol nor [4-14C]cholesterol was detected in peripheral nerves biopsied at 49 and 97 days after [4-14C]cholesterol given intravenously. Of the 18 tissues analyzed at biopsy and autopsy, the cholestanol content varied from 0.09 mg/g in psoas muscle to 76 mg/g in a cerebellar xanthoma. With the assumption that the cholestanol-to-cholesterol ratio is 1.0, the relative cholestanol-to-cholesterol ratio varied from 1.0 in plasma and liver to 30.0 in the cerebellar xanthoma; cholestanol was especially high in nerve tissue. Our data indicate that CTX patients absorb cholestanol from the diet. They have a higher than normal cholestanol production rate. Cholestanol was derived from cholesterol. In CTX patients, the blood-brain barrier was intact to the passage of [4-14C]cholesterol and [4-14C]cholestanol. The deposition of large amounts of cholestanol (up to 30% of total sterols in cerebellum) in nerve tissues must have an important role in the neurological symptoms in CTX patients. In view of the intact blood-brain barrier, several other explanations for the large amounts of cholestanol in the brain were postulated.  相似文献   

18.
A double isotope labelling technique was used to simultaneously determine the in vivo turnover rates of 4-hydroxy-3-methoxyphenylglycol (HMPG) and 4-hydroxy-3-methoxymandelic acid (HMMA, VMA) and the rate of HMPG oxidation to HMMA. Six healthy men were given intravenous injections of [2H3]HMPG and [2H6]HMMA and their plasma and urine samples analysed by gas chromatography--mass spectrometry (GC/MS) for the protium and deuterium species. HMPG and HMMA production rates were calculated by isotope dilution. The rate of HMPG oxidation to HMMA was obtained from the fraction of [2H3]HMPG recovered as [2H3]HMMA. The results showed that the entire production of HMMA, 1.11 +/- 0.21 mumol/h (mean +/- SE), could be accounted for by oxidation of HMPG, 1.49 +/- 0.31 mumol/h. In another experiment designed to avoid expansion of the HMPG body pool, a tracer dose of [14C]HMPG was given to the same subjects. The levels of [14C]HMPG and [14C]HMMA were measured in urine after extraction and separation by thin layer chromatography. Urinary excretion of endogenous HMPG and HMMA was determined by GC/MS. The results showed that the endogenous HMMA fraction of the total HMPG and HMMA urinary excretion rate, 0.57 +/- 0.04, was the same as the fraction of [14C]HMPG oxidized to [14C]HMMA, 0.62 +/- 0.01. Thus, HMPG is the main intermediate in the metabolic conversion of norepinephrine and epinephrine to HMMA in man.  相似文献   

19.
l-Galactose dehydrogenase (l-GalDH), a novel enzyme that oxidizes l-Gal to l-galactono-1,4-lactone (l-GalL), has been purified from pea seedlings and cloned from Arabidopsis thaliana. l-GalL is a proposed substrate for ascorbate biosynthesis in plants, therefore the function of l-GalDH in ascorbate biosynthesis was investigated by overexpression in tobacco and antisense suppression in A. thaliana. In tobacco the highest expressing lines had a 3.5-fold increase in extractable activity, but this did not increase leaf ascorbate concentration. Arabidopsis thaliana, transformed with an antisense l-GalDH construct, produced lines with 30% of wild-type activity. These had lower leaf ascorbate concentration when grown under high light conditions. l-Gal pool size increased in antisense transformants with low l-GalDH activity, and l-Gal concentration was negatively correlated with ascorbate. The results provide direct evidence for a role of l-GalDH in ascorbate biosynthesis. Ascorbate pool size in A. thaliana is increased by acclimation to high light, but l-GalDH expression was not affected. l-Gal accumulation was higher in antisense plants acclimated to high light, indicating that the capacity to synthesize l-Gal from GDP-mannose is increased. Because the only known function of l-GalL is ascorbate synthesis, these antisense plants provide an opportunity to investigate ascorbate function with minimal effects on carbohydrate metabolism. Measurements of other antioxidants revealed an increase in ascorbate- and pyrogallol-dependent peroxidase activity in low-ascorbate lines. As ascorbate is the major hydrogen peroxide-scavenging antioxidant in plants, this could indicate a compensatory mechanism for controlling hydrogen peroxide concentration.  相似文献   

20.
1. Cerebral-cortex slices prelabelled with gamma-amino[1-(14)C]butyrate (GABA) were incubated in a glucose-saline medium. After the initial rapid uptake there was no appreciable re-entry of (14)C into the GABA pool, either from the medium or from labelled metabolites formed in the tissue. The kinetic constants of GABA metabolism were determined by computer simulation of the experimental results by using mathematical procedures. The GABA flux was estimated to be 0.03mumol per min/g, or about 8% of the total flux through the tricarboxylic acid cycle. It was found that the assumption of compartmentation did not greatly affect the estimates of the GABA flux. 2. The time-course of incorporation of (14)C into amino acids associated with the tricarboxylic acid cycle was followed with [1-(14)C]GABA and [U-(14)C]-glucose as labelled substrates. The results were consistent with the utilization of GABA via succinate. This was confirmed by determining the position of (14)C in the carbon skeletons of aspartate and glutamate formed after the oxidation of [1-(14)C]GABA. These results also indicated that under the experimental conditions the reversal of reactions catalysed by alpha-oxoglutarate dehydrogenase and glutamate decarboxylase respectively was negligible. The conversion of [(14)C]GABA into gamma-hydroxybutyrate was probably also of minor importance, but decarboxylation of oxaloacetate did occur at a relatively slow rate. 3. When [1-(14)C]GABA was the labelled substrate there was evidence of a metabolic compartmentation of glutamate since, even before the peak of the incorporation of (14)C into glutamate had been reached, the glutamine/glutamate specific-radioactivity ratio was greater than unity. When [U-(14)C]glucose was oxidized this ratio was less than unity. The heterogeneity of the glutamate pool was indicated also by the relatively high specific radioactivity of GABA, which was comparable with that of aspartate during the whole incubation time (40min). The rates of equilibration of labelled amino acids between slice and medium gave evidence that the permeability properties of the glutamate compartments labelled as a result of oxidation of [1-(14)C]GABA were different from those labelled by the metabolism of [(14)C]glucose. The results showed therefore that in brain tissue incubated under the conditions used, the organization underlying metabolic compartmentation was preserved. The observed concentration ratios of amino acids between tissue and medium were also similar to those obtaining in vivo. These ratios decreased in the order: GABA>acidic acids>neutral amino acids>glutamine. 4. The approximate pool sizes of the amino acids in the different metabolic compartments were calculated. The glutamate content of the pool responsible for most of the labelling of glutamine during oxidation of [1-(14)C]GABA was estimated to be not more than 30% of the total tissue glutamate. The GABA content of the ;transmitter pool' was estimated to be 25-30% of the total GABA in the tissue. The structural correlates of metabolic compartmentation were considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号