首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improved sensitivity of biological sequence database searches   总被引:26,自引:0,他引:26  
We have increased the sensitivity ofDNA and protein sequencedatabase searches by allowing similar but non-identical aminoacids or nucleotides to match. In addition, one can match k-tuplesor words instead of matching individual residues in order tospeed the search. A matching matrix specifies which k-tuplesmatch each other. The matching matrix can be calculated froma similarity matrix of amino acids and a threshold of similarityrequired for matching. This permits amino acid similarity matricesor replacement matrices (PAM matrices) to be used in the firststep of a sequence comparison rather than in a secondary scoringphase. The concept of matching non-identical k-tuples also increasesthe power ofDNA database searches. For example, a matrix thatspecifies that any 3-tuple in a DNA sequence can match any other3-tuple encoding the same amino acid permits a DNA databasesearch using a DNA query sequence for regions that would encodea similar amino acid sequence. Received on October 10, 1989; accepted on May 1, 1990  相似文献   

2.
The amino acid sequences of proteins provide rich information for inferring distant phylogenetic relationships and for predicting protein functions. Estimating the rate matrix of residue substitutions from amino acid sequences is also important because the rate matrix can be used to develop scoring matrices for sequence alignment. Here we use a continuous time Markov process to model the substitution rates of residues and develop a Bayesian Markov chain Monte Carlo method for rate estimation. We validate our method using simulated artificial protein sequences. Because different local regions such as binding surfaces and the protein interior core experience different selection pressures due to functional or stability constraints, we use our method to estimate the substitution rates of local regions. Our results show that the substitution rates are very different for residues in the buried core and residues on the solvent-exposed surfaces. In addition, the rest of the proteins on the binding surfaces also have very different substitution rates from residues. Based on these findings, we further develop a method for protein function prediction by surface matching using scoring matrices derived from estimated substitution rates for residues located on the binding surfaces. We show with examples that our method is effective in identifying functionally related proteins that have overall low sequence identity, a task known to be very challenging.  相似文献   

3.

Background

Amino acid replacement rate matrices are a crucial component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Ideally, the rate matrix reflects the mutational behavior of the actual data under study; however, estimating amino acid replacement rate matrices requires large protein alignments and is computationally expensive and complex. As a compromise, sub-optimal pre-calculated generic matrices are typically used for protein-based phylogeny. Sequence availability has now grown to a point where problem-specific rate matrices can often be calculated if the computational cost can be controlled.

Results

The most time consuming step in estimating rate matrices by maximum likelihood is building maximum likelihood phylogenetic trees from protein alignments. We propose a new procedure, called FastMG, to overcome this obstacle. The key innovation is the alignment-splitting algorithm that splits alignments with many sequences into non-overlapping sub-alignments prior to estimating amino acid replacement rates. Experiments with different large data sets showed that the FastMG procedure was an order of magnitude faster than without splitting. Importantly, there was no apparent loss in matrix quality if an appropriate splitting procedure is used.

Conclusions

FastMG is a simple, fast and accurate procedure to estimate amino acid replacement rate matrices from large data sets. It enables researchers to study the evolutionary relationships for specific groups of proteins or taxa with optimized, data-specific amino acid replacement rate matrices. The programs, data sets, and the new mammalian mitochondrial protein rate matrix are available at http://fastmg.codeplex.com.  相似文献   

4.
Hierarchical classifications of the 20 amino acids according to residue relationships within scoring matrices have not hitherto been tested for reliability. In fact, testing here of the residue groupings obtained thus from 18 published matrices shows that they vary considerably in reliability. This behaviour gives a new insight then into the matrices with respect to the relationships between the amino acid scores contained therein. For example, other than the trivial grouping of the 20 amino acids, no reliable residue groupings are present in all 18 matrix amino acid hierarchical classifications. Hierarchical classification of the 18 scoring matrices themselves is investigated in terms of matrix representation and choice of similarity and dissimilarity measures for matrix comparison. There is no absolute standard against which to compare a matrix clustering, of course, but it is possible to assess the usefulness of a measure for the purpose in terms of the reliability of the calculated tree. Matrix representation is shown to be important. Finally, a novel two-step approach for hierarchical classification of the 18 amino acid scoring matrices is described.  相似文献   

5.
The results of testing the recognition ability of various amino acid substitution matrices and manifold (both extracted from the literature and of our own design) pseudopotentials intended for the recognition of protein structures and sequence-to-structure alignments are described. The numerical estimates of the recognition ability of various substitution matrices and pseudopotentials were obtained for different levels of protein structure similarity. It is demonstrated that substitution matrices work much better than pseudopotentials at a high degree of sequence similarity of spatially similar proteins; however, some pseudopotentials outdo substitution matrices at a low level of sequence similarity between analogous proteins.  相似文献   

6.
MOTIVATION: We propose a general method for deriving amino acid substitution matrices from low resolution force fields. Unlike current popular methods, the approach does not rely on evolutionary arguments or alignment of sequences or structures. Instead, residues are computationally mutated and their contribution to the total energy/score is collected. The average of these values over each position within a set of proteins results in a substitution matrix. RESULTS: Example substitution matrices have been calculated from force fields based on different philosophies and their performance compared with conventional substitution matrices. Although this can produce useful substitution matrices, the methodology highlights the virtues, deficiencies and biases of the source force fields. It also allows a rather direct comparison of sequence alignment methods with the score functions underlying protein sequence to structure threading. AVAILABILITY: Example substitution matrices are available from http://www.rsc.anu.edu.au/~zsuzsa/suppl/matrices.html. SUPPLEMENTARY INFORMATION: The list of proteins used for data collection and the optimized parameters for the alignment are given as supplementary material at http://www.rsc.anu.edu.au/~zsuzsa/suppl/matrices.html.  相似文献   

7.
Amino acid substitution matrices from an information theoretic perspective   总被引:33,自引:0,他引:33  
Protein sequence alignments have become an important tool for molecular biologists. Local alignments are frequently constructed with the aid of a "substitution score matrix" that specifies a score for aligning each pair of amino acid residues. Over the years, many different substitution matrices have been proposed, based on a wide variety of rationales. Statistical results, however, demonstrate that any such matrix is implicitly a "log-odds" matrix, with a specific target distribution for aligned pairs of amino acid residues. In the light of information theory, it is possible to express the scores of a substitution matrix in bits and to see that different matrices are better adapted to different purposes. The most widely used matrix for protein sequence comparison has been the PAM-250 matrix. It is argued that for database searches the PAM-120 matrix generally is more appropriate, while for comparing two specific proteins with suspected homology the PAM-200 matrix is indicated. Examples discussed include the lipocalins, human alpha 1 B-glycoprotein, the cystic fibrosis transmembrane conductance regulator and the globins.  相似文献   

8.
Sequence alignment is a standard method for the estimation of the evolutionary, structural, and functional relationships among amino acid sequences. The quality of alignments depends on the used similarity matrix. Statistical contact potentials (CPs) contain information on contact propensities among residues in native protein structures. Substitution matrices (SMs) based on CPs are applicable for the comparison of distantly related sequences. Here, contact between amino acids was estimated on the basis of the evaluation of the distances between side-chain terminal groups (SCTGs), which are defined as the group of the side-chain heavy atoms with fixed distances between them. In this paper, two new types of CPs and similarity matrices have been constructed: one based on fixed cutoff distance obtained from geometric characteristics of the SCTGs (TGC1), while the other is distance-dependent potential (TGC2). These matrices are compared with other popular SMs. The performance of the matrices was evaluated by comparing sequence with structural alignments. The obtained results show that TGC2 has the best performance among contact-based matrices, but on the whole, contact-based matrices have slightly lower performance than other SMs except fold-level similarity.  相似文献   

9.
The evolutionary selection forces acting on a protein are commonly inferred using evolutionary codon models by contrasting the rate of synonymous to nonsynonymous substitutions. Most widely used models are based on theoretical assumptions and ignore the empirical observation that distinct amino acids differ in their replacement rates. In this paper, we develop a general method that allows assimilation of empirical amino acid replacement probabilities into a codon-substitution matrix. In this way, the resulting codon model takes into account not only the transition-transversion bias and the nonsynonymous/synonymous ratio, but also the different amino acid replacement probabilities as specified in empirical amino acid matrices. Different empirical amino acid replacement matrices, such as secondary structure-specific matrices or organelle-specific matrices (e.g., mitochondria and chloroplasts), can be incorporated into the model, making it context dependent. Using a diverse set of coding DNA sequences, we show that the novel model better fits biological data as compared with either mechanistic or empirical codon models. Using the suggested model, we further analyze human immunodeficiency virus type 1 protease sequences obtained from drug-treated patients and reveal positive selection in sites that are known to confer drug resistance to the virus.  相似文献   

10.
Sequence alignment is a standard method for the estimation of the evolutionary, structural, and functional relationships among amino acid sequences. The quality of alignments depends on the used similarity matrix. Statistical contact potentials (CPs) contain information on contact propensities among residues in native protein structures. Substitution matrices (SMs) based on CPs are applicable for the comparison of distantly related sequences. Here, contact between amino acids was estimated on the basis of the evaluation of the distances between side-chain terminal groups (SCTGs), which are defined as the group of the side-chain heavy atoms with fixed distances between them. In this paper, two new types of CPs and similarity matrices have been constructed: one based on fixed cutoff distance obtained from geometric characteristics of the SCTGs (TGC1), while the other is distance-dependent potential (TGC2). These matrices are compared with other popular SMs. The performance of the matrices was evaluated by comparing sequence with structural alignments. The obtained results show that TGC2 has the best performance among contact-based matrices, but on the whole, contact-based matrices have slightly lower performance than other SMs except fold-level similarity.  相似文献   

11.
MOTIVATION: In recent years, advances have been made in the ability of computational methods to discriminate between homologous and non-homologous proteins in the 'twilight zone' of sequence similarity, where the percent sequence identity is a poor indicator of homology. To make these predictions more valuable to the protein modeler, they must be accompanied by accurate alignments. Pairwise sequence alignments are inferences of orthologous relationships between sequence positions. Evolutionary distance is traditionally modeled using global amino acid substitution matrices. But real differences in the likelihood of substitutions may exist for different structural contexts within proteins, since structural context contributes to the selective pressure. RESULTS: HMMSUM (HMMSTR-based substitution matrices) is a new model for structural context-based amino acid substitution probabilities consisting of a set of 281 matrices, each for a different sequence-structure context. HMMSUM does not require the structure of the protein to be known. Instead, predictions of local structure are made using HMMSTR, a hidden Markov model for local structure. Alignments using the HMMSUM matrices compare favorably to alignments carried out using the BLOSUM matrices or structure-based substitution matrices SDM and HSDM when validated against remote homolog alignments from BAliBASE. HMMSUM has been implemented using local Dynamic Programming and with the Bayesian Adaptive alignment method.  相似文献   

12.
Markovian models of protein evolution that relax the assumption of independent change among codons are considered. With this comparatively realistic framework, an evolutionary rate at a site can depend both on the state of the site and on the states of surrounding sites. By allowing a relatively general dependence structure among sites, models of evolution can reflect attributes of tertiary structure. To quantify the impact of protein structure on protein evolution, we analyze protein-coding DNA sequence pairs with an evolutionary model that incorporates effects of solvent accessibility and pairwise interactions among amino acid residues. By explicitly considering the relationship between nonsynonymous substitution rates and protein structure, this approach can lead to refined detection and characterization of positive selection. Analyses of simulated sequence pairs indicate that parameters in this evolutionary model can be well estimated. Analyses of lysozyme c and annexin V sequence pairs yield the biologically reasonable result that amino acid replacement rates are higher when the replacements lead to energetically favorable proteins than when they destabilize the proteins. Although the focus here is evolutionary dependence among codons that is associated with protein structure, the statistical approach is quite general and could be applied to diverse cases of evolutionary dependence where surrogates for sequence fitness can be measured or modeled.  相似文献   

13.
14.
Most protein substitution models use a single amino acid replacement matrix summarizing the biochemical properties of amino acids. However, site evolution is highly heterogeneous and depends on many factors that influence the substitution patterns. In this paper, we investigate the use of different substitution matrices for different site evolutionary rates. Indeed, the variability of evolutionary rates corresponds to one of the most apparent heterogeneity factors among sites, and there is no reason to assume that the substitution patterns remain identical regardless of the evolutionary rate. We first introduce LG4M, which is composed of four matrices, each corresponding to one discrete gamma rate category (of four). These matrices differ in their amino acid equilibrium distributions and in their exchangeabilities, contrary to the standard gamma model where only the global rate differs from one category to another. Next, we present LG4X, which also uses four different matrices, but leaves aside the gamma distribution and follows a distribution-free scheme for the site rates. All these matrices are estimated from a very large alignment database, and our two models are tested using a large sample of independent alignments. Detailed analysis of resulting matrices and models shows the complexity of amino acid substitutions and the advantage of flexible models such as LG4M and LG4X. Both significantly outperform single-matrix models, providing gains of dozens to hundreds of log-likelihood units for most data sets. LG4X obtains substantial gains compared with LG4M, thanks to its distribution-free scheme for site rates. Since LG4M and LG4X display such advantages but require the same memory space and have comparable running times to standard models, we believe that LG4M and LG4X are relevant alternatives to single replacement matrices. Our models, data, and software are available from http://www.atgc-montpellier.fr/models/lg4x.  相似文献   

15.
The amino acid sequence of human plasma alpha1-acid glycoprotein, upon comparison with the sequences of other blood proteins, was shown to possess significant similarity with the immunoglobulins. Employing direct and corrected sequence identity, the average mutation value and two different computer comparisons for the evaluation of sequence similarity, the following two regions of this alpha-globulin, which account for approximately half of the total amino acid sequence of the protein, were found to possess sequence similarity with the immunoglobulins. a) The region from residues 77 through 125 proved to be related to the variable region of several human H and L chains, and b) the region from residues 136 through 166 was found to be related not only to the constant region of a human and a mouse L chain but also to the third and fourth constant region of a rabbit and a human H chain, respectively. These results suggest that alpha1-acid glycoprotein is probably related to the immunoglobulins and further suggest that it possibly diverged from the immunoglobulin evolutionary tree prior to the formation of the primitive L chain.  相似文献   

16.
MOTIVATION: Database searching algorithms for proteins use scoring matrices based on average protein properties, and thus are dominated by globular proteins. However, since transmembrane regions of a protein are in a distinctly different environment than globular proteins, one would expect generalized substitution matrices to be inappropriate for transmembrane regions. RESULTS: We present the PHAT (predicted hydrophobic and transmembrane) matrix, which significantly outperforms generalized matrices and a previously published transmembrane matrix in searches with transmembrane queries. We conclude that a better matrix can be constructed by using background frequencies characteristic of the twilight zone, where low-scoring true positives have scores indistinguishable from high-scoring false positives, rather than the amino acid frequencies of the database. The PHAT matrix may help improve the accuracy of sequence alignments and evolutionary trees of membrane proteins.  相似文献   

17.
18.
Comparative sequence analyses, including such fundamental bioinformatics techniques as similarity searching, sequence alignment and phylogenetic inference, have become a mainstay for researchers studying type 1 Human Immunodeficiency Virus (HIV-1) genome structure and evolution. Implicit in comparative analyses is an underlying model of evolution, and the chosen model can significantly affect the results. In general, evolutionary models describe the probabilities of replacing one amino acid character with another over a period of time. Most widely used evolutionary models for protein sequences have been derived from curated alignments of hundreds of proteins, usually based on mammalian genomes. It is unclear to what extent these empirical models are generalizable to a very different organism, such as HIV-1-the most extensively sequenced organism in existence. We developed a maximum likelihood model fitting procedure to a collection of HIV-1 alignments sampled from different viral genes, and inferred two empirical substitution models, suitable for describing between-and within-host evolution. Our procedure pools the information from multiple sequence alignments, and provided software implementation can be run efficiently in parallel on a computer cluster. We describe how the inferred substitution models can be used to generate scoring matrices suitable for alignment and similarity searches. Our models had a consistently superior fit relative to the best existing models and to parameter-rich data-driven models when benchmarked on independent HIV-1 alignments, demonstrating evolutionary biases in amino-acid substitution that are unique to HIV, and that are not captured by the existing models. The scoring matrices derived from the models showed a marked difference from common amino-acid scoring matrices. The use of an appropriate evolutionary model recovered a known viral transmission history, whereas a poorly chosen model introduced phylogenetic error. We argue that our model derivation procedure is immediately applicable to other organisms with extensive sequence data available, such as Hepatitis C and Influenza A viruses.  相似文献   

19.
The estimation of amino acid replacement frequencies during molecular evolution is crucial for many applications in sequence analysis. Score matrices for database search programs or phylogenetic analysis rely on such models of protein evolution. Pioneering work was done by Dayhoff et al. (1978) who formulated a Markov model of evolution and derived the famous PAM score matrices. Her estimation procedure for amino acid exchange frequencies is restricted to pairs of proteins that have a constant and small degree of divergence. Here we present an improved estimator, called the resolvent method, that is not subject to these limitations. This extension of Dayhoff's approach enables us to estimate an amino acid substitution model from alignments of varying degree of divergence. Extensive simulations show the capability of the new estimator to recover accurately the exchange frequencies among amino acids. Based on the SYSTERS database of aligned protein families (Krause and Vingron, 1998) we recompute a series of score matrices.  相似文献   

20.
提出一种新颖的方案使蛋白质结构信息可视化。在滑动窗口方法基础上,每一个天然氨基酸采用从氨基酸索引数据库中挑选的48种特性参数描述,在某一特定窗口下的所有氨基酸残基的参数就组成一个矩阵,通过矩阵变换得到一个方矩阵,再经过窗口的滑动就得到基于整个蛋白质的所有这些窗口矩阵的本征值矩阵。对本征值矩阵元素作图得到一系列的本征值曲线,这种曲线的轮廓不随窗口的变化而变化,这些曲线被称为蛋白质的特征曲线。为选择合适的窗口宽度、对同一类型蛋白质不同窗口宽度及不同类型蛋白质相同窗口宽度下的本征值矩阵进行了比较研究,对其潜在的用途进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号