首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Acute phase changes in trace mineral metabolism were examined in turkey embryos. An endotoxin injection resulted in increased concentrations of serum copper and liver zinc and decreased concentrations of serum zinc in embryos incubated either in ovo or ex ovo. Changes in zinc and copper metabolism occurred when endotoxin either was injected intramuscularly, into the amnionic fluid, or administered onto the chorioallantoic membrane. Unlike poults, embryos did not respond to an inflammatory challenge with decreased serum iron concentrations. Acute phase changes in embryo serum zinc and copper as well as liver zinc concentrations were similar to those in poults. Increased liver zinc concentrations were associated with increased zinc in metallothionein (MT). An injection of a crude interleukin 1 preparation into embryos resulted in similar increases in hepatic zinc and MT concentrations as an endotoxin injection, suggesting a role for this cytokine in mediating the acute phase changes in embryonic zinc metabolism.  相似文献   

2.
Stimulation of the Kupffer cells with E. coli endotoxin (the purified lipopolysaccharide) or with prodigiosan (a polysaccharide from Serratia marcescens) 24 h before partial hepatectomy (resection of 65-70% of the liver) stimulated and intensified the onset of liver regenerative activity (evaluated from changes in liver DNA synthesis, the H5 labelling index and the mitotic activity of the hepatocytes). Liver DNA synthesis increased together with the dose of endotoxin (i.v., from 25 to 1000 micrograms/kg body weight). If E. coli endotoxin was injected during or 3 h after partial hepatectomy, partial inhibition of liver DNA synthesis was observed. In mice stimulated with zymosan (a polysaccharide isolated from yeast), administered 5 days before performing partial hepatectomy, proliferation of the hepatocytes (evaluated from changes in the 3H labelling index and in the mitotic activity of the hepatocytes) was evaluated. The results confirm that proliferation is correlated to the state of reactivity of the Kupffer cells.  相似文献   

3.
The present study was conducted to determine the possible role of intracellular Ca2+ in lipid peroxide formation in endotoxin-poisoned mice. Leakages of LDH isozyme and acid phosphatase in serum of mice fed a Ca2+-deficient diet were remarkably increased after administration of 200 micrograms of endotoxin compared to that in endotoxin-nontreated Ca2+-deficient mice. Superoxide anion generation in liver of Ca2+-deficient mice and in mice fed a normal diet greatly increased after endotoxin administration. On the contrary, after endotoxin injection there was scarcely any difference in SOD activity of liver of Ca2+-deficient mice as compared to that in endotoxin-nontreated Ca2+-deficient mice. In spite of an increase of superoxide anion generation there was little or no effect of endotoxin administration on lipid peroxide formation in mice given a Ca2+-deficient diet. In the mice treated with a Ca2+-deficient diet, free radical scavenger levels (alpha-tocopherol and nonprotein sulfhydryl) in liver tissue after endotoxin injection were markedly decreased compared to those in Ca2+-deficient diet alone. Mice fed a normal diet exhibited a significant decrease of lipid peroxide level in liver by injection of endotoxin together with verapamil (10 mg/kg, s.c.). When mice fed a normal diet were injected with endotoxin, the state 3 respiratory activity showed a 49% decrease, and respiratory control ratio (RCR) of endotoxemic mice liver mitochondria was 38% lower than normal liver mitochondria. No difference could be observed in levels of state 3 and RCR between the mice given verapamil plus endotoxin and the normal mice. These findings suggest the possibility that Ca2+ may participate in the free radical formation in the liver during endotoxemia and also that Ca2+ may play an important role in the damage of liver mitochondrial function in endotoxemic mice.  相似文献   

4.
The response of fatty liver to stress conditions (t-butyl hydroperoxide [t-BH] or 36 h of fasting) was investigated by assessing intracellular glutathione (GSH) compartmentation and redox status, GSH peroxidase (GSH-Px) and reductase (GSSG-Rx) activities, lipid peroxidation (TBARs) and serum ALT levels in rats on a choline-deficient diet. Baseline cytosolic GSH was similar between fatty and normal livers, while the mitochondrial GSH content was significantly lower in fatty livers. With the except of cytosolic GSH-Px activity, steatosis was associated with significantly higher GSH-related enzymes activities. Liver TBARs and serum ALT levels were also higher. Administration of t-BH significantly decreased the concentration of cytosolic GSH, increased GSSG levels in all the compartments, and increased TBARs levels in cytosol and mitochondria and serum ALT; all these alterations were more marked in rats with fatty liver. Fasting decreased the concentration of GSH in all the compartments both in normal and fatty livers, increased GSSG, TBARs and ALT levels, and decreased by 50% the activities of GSH-related enzymes. Administration of diethylmaleimide (DEM) resulted in cytosolic and microsomal GSH pool depletion. Administration of t-BH to DEM-treated rats further affected cytosolic GSH and enhanced ALT levels, whereas the application of fasting to GSH depleted rats mainly altered the mitochondrial GSH system, especially in fatty livers. This study shows that fatty livers have a weak compensation of hepatic GSH regulation, which fails under stress conditions, thus increasing the fatty liver's susceptibility to oxidative damage. Differences emerge among subcellular compartments which point to differential adaptation of these organelles to fatty degeneration.  相似文献   

5.
Hyperoxic adult rats have prolonged survival and reduced morphological evidence of lung injury when treated with a single dose of bacterial endotoxin; this effect is mediated by an augmentation of antioxidant enzyme activity in lung homogenate. To determine whether endotoxin would prolong survival and influence antioxidant enzyme levels in lambs whose physiological response to O2 breathing can be serially measured, we administered a single intravenous dose of endotoxin (0.75 microgram/kg body wt) to 13 lambs before exposing them to greater than 95% O2 (n = 11) or air (n = 2). Seven additional lambs were placed in O2 after receiving only saline vehicle. All lambs had been instrumented to measure pulmonary vascular pressures and cardiac output, and 10 lambs had lung lymph fistulas. O2-exposed control lambs developed noncardiogenic pulmonary edema and respiratory failure within 85 +/- 10 h (range 76-110 h); antioxidant enzymes were not increased, but reduced glutathione (GSH) levels fell and oxidized glutathione (GSSG) increased, reflecting the oxidant stress of O2 exposure. By contrast, endotoxin-treated O2-exposed lambs had a delayed increase in microvascular permeability to protein, a reduced rate of lung edema formation, normal gas exchange after 72 h in O2, and prolonged survival (136 +/- 15 h; range 90-160 h; all variables P less than 0.05). Despite prolonged survival, postmortem lung water content was no greater in the lambs that received endotoxin. Treatment with endotoxin did not increase antioxidant enzyme levels in lung homogenate, but levels of GSH relative to GSSG were significantly elevated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Liver, Brain, and Heart Metallothionein Induction by Stress   总被引:4,自引:0,他引:4  
To date, stress has been reported to induce metallothionein (MT) synthesis in the liver only. In the present experiment, the effects of food and water deprivation alone or of immobilization stress plus food and water deprivation on liver, brain, and heart MT have been studied in adult male rats. Liver and brain MT levels were increased by immobilization stress as soon as 6 h after the onset of stress. Eighteen hours of immobilization, which is accompanied by food and water deprivation, further increased liver and brain MT levels and significantly increased heart MT content. A specific effect of immobilization was evident in all three tissues, because the effect of food and water deprivation alone was significantly lower than that of immobilization plus starvation. Changes in MT apparently were not related to changes in cytosolic Zn.  相似文献   

7.
 We studied the effect of recombinant human macrophage-colony-stimulating factor (rhM-CSF) on the formation of lung and liver metastases following the i.v. injection of the B16 melanoma subline (B16 LiLu) into mice. When rhM-CSF was administered before the B16 inoculation, the number of tumor metastases decreased in the lung and liver. However, the administration of rhM-CSF after B16 inoculation did not produce an antimetastatic effect in the lung, but did in the liver. B16 cells labeled with 5-[125I]-iodo-2′-deoxyuridine (125I-dUrd) were injected and the arrest of tumor cell emboli was examined in the capillary beds of the lung and liver of mice treated with either vehicle or rhM-CSF. In both groups, there were the same numbers of B16 cells in both the lung and the liver 3 minutes after the B16 injection, and almost all tumor cells died within 24 h. However, the number of cells surviving in the lung was decreased in mice injected with rhM-CSF (37%). There was no difference in the number of cells in the livers of mice treated either with vehicle or rhM-CSF in the first 24 h after tumor cell injection. The administration of rhM-CSF increased NK 1.1+ cells in the mouse spleen and facilitated NK activity in vivo. At the same time, the administration of an anti-NK 1.1 antibody blocked the antimetastatic effect of rhM-CSF in the lung but not in the liver. The antibody was effective only when it was injected before the B16 inoculation. These results suggest that the antimetastatic effect of rhM-CSF in the lung was mediated by NK 1.1+ cells within 24 h of B16 injection. In contrast, the antimetastatic effect of rhM-CSF in the liver was mediated not only by NK 1.1+ cells but also by other antimetastatic systems such as macrophages. Received: 8 April 1996 / Accepted: 26 November 1996  相似文献   

8.
We studied the effects of superoxide dismutase (SOD), an enzyme that converts superoxide into peroxide, on the cardiopulmonary response to endotoxin in sheep. Sheep (n = 18) were prepared for chronic measurement of cardiopulmonary variables, including lung lymph flow, by surgically implanting catheters under halothane anesthesia. Nine of the animals were studied before and after the administration of endotoxin (0.75 microgram/kg) with and without SOD. An additional nine animals received SOD without the lipopolysaccharide. Endotoxin produced an increase in lung lymph flow that was initially associated with a marked pulmonary arterial (PA) hypertension and reduced lymph-to-plasma protein ratio (L/P). The lymph flow remained elevated later in the response, but there was only a mild increase in PA pressure, and the L/P was normal. There was also a fall in blood neutrophils and in cardiac index. SOD increased this secondary elevation in lung lymph flow, and the corresponding L/P was greater than the preendotoxin value. The fall in neutrophil count, cardiac output, and the elevation in PA pressure seen with endotoxin were not affected by SOD. When administered in the absence of endotoxin, SOD produced no perceptible change in the cardiopulmonary and lymph values. We conclude that peroxide, hydroxyl ion, and/or other free radicals formed by the action of SOD must be responsible for a portion of the endotoxin response rather than superoxide itself.  相似文献   

9.
Inflammation has an important role in many diseases such as cystic fibrosis, allergies and cancer. The free radicals produced during inflammation, can induce gene mutations and posttranslational modifications of cancer related proteins. Nigella sativa L. (N. sativa) is herbaceous plant and commonly used as a natural food. It has many pharmacological effects including antibacterial, antifungal, antitumor, analgesic, antipyretic activity. The aim of this study was to investigate the anti-inflammatuar and anti-oxidant activity of N. sativa in acute inflammation. Thus we used the experimental lipopolysaccharides (LPS)-induced model. Intraperitoneal LPS 1 mg/kg was administered to groups. N. sativa (500 mg/kg) and essential oil (5 ml/kg) were given orally to treatment groups, after 24-h of intraperitoneal LPS-injection. To determine the lung inflammation, 18F-fluoro-deoxy-d-glucose (0.8 ml/kg) was administrated under the anesthesia before the 1 h of PET-scanning. After the FDG-PET, samples were collected. Lung and liver 18F-FDG-uptake was calculated. Serum AST, ALT, LDH and hcCRP levels were determined and liver, lung and erythrocyte SOD, MDA and CAT levels were measured. Liver and lung NO and DNA fragmentation levels were determined. MDA levels were decreased in treated inflammation groups whereas increased in untreated inflammation group. SOD and CAT activities in untreated inflammation group were significantly lower. According to the control group, increased AST and ALT levels were found in untreated inflammation group. 18F-FDG uptake of inflammation groups were increased when compare the control group. We found increased 18F-FDG uptake, DNA fragmentation and NO levels in LPS-induced inflammation groups. We conclude that, in LPS-induced inflammation, N. sativa have therapeutic and anti-oxidant effects.  相似文献   

10.

Aim

To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense.

Methods

Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques.

Results

Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver.

Conclusion

Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis.  相似文献   

11.
为探讨金属硫蛋白(MT)在运动提高机体自我贩作用,本文实验观察了游泳运动对大鼠心、肝、肺、脑、血管、因浆和骨骼肌等组织金属硫蛋白含量的影响。结果表明耐力训练组大鼠心、肝、肺和骨骼组织金属硫蛋白含量较政党对照组明显降低13-34%(P〈0.05);急性力竭运动组大鼠心、肝、脑、肺和骨骼肌组织其含量较正常对照则明显或高21-75%(P〈0.05);但两组大鼠血管和血浆MT含量变化与对照组大鼠要比无统计  相似文献   

12.
To determine if prenatal zinc deficiency has a persistent effect on metallothionein (MT) regulation, Swiss-Webster mice were mated and fed a diet containing either control (100 micrograms Zn/g) or low levels of zinc (5 micrograms Zn/g) from Day 7 of gestation to parturition. After birth all mice were given the control diet. Liver zinc and MT levels were 50% lower in newborn pups from dams fed the low zinc diets than in control pups. In control pups, liver zinc and MT concentrations were relatively stable during the first week of postnatal life. In contrast, in pups prenatally deprived of zinc, liver levels of zinc and MT increased such that by Day 3 of postnatal life, the levels were not significantly different from controls. At Day 56, serum IgM concentrations were significantly lower in the low zinc offspring. Liver zinc concentrations in the two groups of mice were similar at Day 70 postnatal, and in both groups liver MT levels were below detection limits. However, when Day 70 mice were given zinc injections to stimulate MT synthesis, the prenatally zinc deprived offspring showed markedly higher liver MT levels than did control mice given similar injections, despite similar liver zinc concentrations in the two groups. These results show that prenatal zinc deficiency has pronounced effects on postnatal MT metabolism which can persist into adulthood.  相似文献   

13.
Exposure to a sublethal dose of endotoxin offers protection against subsequent oxidative stresses. The cellular mechanisms involved in generating this effect are not well understood. We evaluated the effect of endotoxin on antioxidant enzymes in liver peroxisomes. Peroxisomes have recently been shown to contain superoxide dismutase (SOD) and glutathione peroxidase (GPX) in addition to catalase. Peroxisomes were isolated from liver homogenates by differential and density gradient centrifugations. Endotoxin treatment increased the specific activity of SOD and GPX in peroxisomes to 208% and 175% of control activity, respectively. These findings correlated with increases in peroxisomal SOD and GPX proteins observed by immunoblot. Although the quantity of catalase protein was increased when assessed by immunoblot analysis, the specific activity of catalase was decreased to 68% of control activity. Activation of catalase with ethanol only restored catalase activity to control levels suggesting that catalase had undergone irreversible inactivation. The observed increase in GPX activity may represent a compensatory mechanism triggered by accumulating H2O2. The data presented here suggest for the first time that mammalian peroxisomal antioxidant enzymes are altered during the oxidative injury of endotoxin treatment.  相似文献   

14.
The protective effect of melatonin against lipopolysaccharide (LPS)-induced oxidative damage was examined in vitro. Lung, liver, and brain malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HDA) concentrations were measured as indices of induced membrane peroxidative damage. Homogenates of brain, lung, and liver were incubated with LPS at concentrations of either 1, 10, 50, 200, or 400μg/ml for 1 h and, in another study, LPS at a concentration of 400 μg/ml for either 0, 15, 30, or 60 min. Melatonin at increasing concentrations from 0.01–3 mM either alone or together with LPS (400μg/ml) was used. Liver, brain, and lung MDA + 4-HDA levels increased after LPS at concentrations of 10, 50, 200 or 400 μg/ml; this effect was concentration-dependent. The highest levels of lipid peroxidation products were observed after tissues were incubated with an LPS concentration of 400 μg/ml for 60 min; in liver and lung this effect was totally suppressed by melatonin and partially suppressed in brain in a concentration-dependent manner. In addition, melatonin alone was effective in brain at concentrations of 0.1 to 3 mM, in lung at 2 to 3 mM, and in liver at 0.1 to 3 mM; in all cases, the inhibitory effects of melatonin on lipid peroxidation were always directly correlated with the concentration of melatonin in the medium. The results show that the direct effect of LPS on the lipid peroxidation following endotoxin exposure is markedly reduced by melatonin.  相似文献   

15.
In this study, we administered aminoguanidine, a relatively selective inducible nitric oxide synthase (iNOS) inhibitor, to study the role of nitric oxide (NO) in LPS-induced decrease in IGF-I and IGFBP-3. Adult male Wistar rats were injected intraperitoneally with LPS (100 microg/kg), aminoguanidine (100 mg/kg), LPS plus aminoguanidine, or saline. Rats were injected at 1730 and 0830 the next day and killed 4 h after the last injection. LPS administration induced an increase in serum concentrations of nitrite/nitrate (P < 0.01) and a decrease in serum concentrations of growth hormone (GH; P < 0.05) and IGF-I (P < 0.01) as well as in liver IGF-I mRNA levels (P < 0.05). The LPS-induced decrease in serum concentrations of IGF-I and liver IGF-I gene expression seems to be secondary to iNOS activation, since aminoguanidine administration prevented the effect of LPS on circulating IGF-I and its gene expression in the liver. In contrast, LPS-induced decrease in serum GH was not prevented by aminoguanidine administration. LPS injection decreased IGFBP-3 circulating levels (P < 0.05) and its hepatic gene expression (P < 0.01), but endotoxin did not modify the serum IGFBP-3 proteolysis rate. Aminoguanidine administration blocked the inhibitory effect of LPS on both IGFBP-3 serum levels and its hepatic mRNA levels. When aminoguanidine was administered alone, IGFBP-3 serum levels were increased (P < 0.05), whereas its hepatic mRNA levels were decreased. This contrast can be explained by the decrease (P < 0.05) in serum proteolysis of this binding protein caused by aminoguanidine. These data suggest that iNOS plays an important role in LPS-induced decrease in circulating IGF-I and IGFBP-3 by reducing IGF-I and IGFBP-3 gene expression in the liver.  相似文献   

16.
为探讨金属硫蛋白(MT)在运动提高机体自我保护能力方面的作用,本实验观察了游泳运动对大鼠心、肝、肺、脑、血管、血浆和骨骼肌等7种组织金属硫蛋白含量的影响。结果表明耐力训练组大鼠心、肝、肺和骨骼肌组织金属硫蛋白含量较正常对照组明显降低13-34%(P<0.05);急性力竭运动组大鼠心、肝、脑、肺和骨骼肌组织其含量较正常对照组则明显升高21-75%(P<0.05);但两组大鼠血管和血浆MT含量变化与对照组大鼠相比无统计学意义(P<0.05)。推测各组织金属硫蛋白在不同运动形式下的不同变化可能在运动提高机体自我保护能力方面具有积极意义。  相似文献   

17.
Liver metallothionein (MT) mRNA and serum MT levels of adrenalectomized (ADX) and sham-ADX rats in basal and stress (1, 3 or 6 h of restraint) conditions have been measured. Serum MT levels were overall lower in ADX than in sham-ADX rats. Basal liver MT mRNA levels were increased in ADX rats, suggesting that glucocorticoids have an inhibitory role on the regulation of liver MT synthesis. In contrast, liver MT mRNA levels were increased by stress in sham-ADX but not in ADX rats, suggesting a stimulatory role for glucocorticoids. These results suggest that glucocorticoids have a different role in liver MT regulation depending on the physiological situation.  相似文献   

18.
Eighteen hours of immobilization stress, accompanied by food and water deprivation, increased liver metallothionein (MT) but decreased kidney MT levels. Food and water deprivation alone had a significant effect only on liver MT levels. In contrast, stress and food and water deprivation increased both liver and kidney lipid peroxidation levels, indicating that the relationship between MT and lipid peroxidation levels (an index of free radical production) is unclear. Adrenalectomy increased both liver and kidney MT levels in basal conditions, whereas the administration of corticosterone in the drinking water completely reversed the effect of adrenalectomy, indicating an inhibitory role of glucocorticoids on MT regulation in both tissues. Changes in glutathione (GSH) metabolism produced significant effects on kidney MT levels. Thus, the administration of buthionine sulfoximine, an inhibitor of GSH synthesis, decreased kidney GSH and increased kidney MT content, suggesting that increased cysteine pools because of decreased GSH synthesis might increase kidney MT levels through an undetermined mechanism as it appears to be the case in the liver. However, attempts to increase kidney MT levels by the administration of cysteine or GSH were unsuccesful, in contrast to what is known for the liver. The present results suggest that there are similarities but also substantial differences between liver and kidney MT regulation in these experimental conditions.  相似文献   

19.
The adaptive reactions of Vicia faba major L. cv. Bartom to 13-27 days soil flooding and to 14 days of drainage following 13-days of soil flooding were studied. Under flooding, oxygen diffusion rate (ODR) in the root zone decreased from 2.28–3.44 to 0.09–0.28?µmol O2 m?2 s?1; the soil redox potential (Eh) decreased from 543 to 70 mV. Upon drainage of flooded soil the ODR and Eh values returned to the control levels. Oxidative damage and defense systems in leaves were assessed by the concentration of thiobarbituric acid reactive substances (TBARs) and by the activities of superoxide dismutase (SOD) and glutathione reductase (GR). Two stages of stress development are described. During the first stage (1–13 days) shoot dry mass did not decrease, the TBARs concentration and SOD activity increased, the GR activity decreased. The second stage (13–27 days) was characterized by a decrease in the TBARs concentration, SOD and GR activities, pigment concentrations and shoot dry mass. Drainage of flooded soil resulted in elevated concentrations of TBARs and also increased the activities of SOD and GR. Increased SOD activity in the first stage of hypoxic stress development and activations of SOD and GR at oxygen re-entry to soil are responsible for tolerance of Vicia faba to hypoxic and post hypoxic stress associated with soil flooding and subsequent drainage.  相似文献   

20.
目的探讨实验性腹膜炎时,内毒素与肺损伤的变化.方法用酵母多糖A腹腔注射制备大鼠急性实验性腹膜炎模型,随机分为模型组和对照组;观察实验性腹膜炎时,肺损伤变化.结果模型组内毒素、肺匀浆脂质过氧化物,以及白细胞计数均明显增高;而还原谷胱甘肽(GSH)明显降低,与对照组比差异有显著性(P<0.05).结论实验性腹膜炎时,内毒素的形成、细菌因子的释放及脂质过化与肺损害有一定的联系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号