首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
MOTIVATION: Array Comparative Genomic Hybridization (CGH) can reveal chromosomal aberrations in the genomic DNA. These amplifications and deletions at the DNA level are important in the pathogenesis of cancer and other diseases. While a large number of approaches have been proposed for analyzing the large array CGH datasets, the relative merits of these methods in practice are not clear. RESULTS: We compare 11 different algorithms for analyzing array CGH data. These include both segment detection methods and smoothing methods, based on diverse techniques such as mixture models, Hidden Markov Models, maximum likelihood, regression, wavelets and genetic algorithms. We compute the Receiver Operating Characteristic (ROC) curves using simulated data to quantify sensitivity and specificity for various levels of signal-to-noise ratio and different sizes of abnormalities. We also characterize their performance on chromosomal regions of interest in a real dataset obtained from patients with Glioblastoma Multiforme. While comparisons of this type are difficult due to possibly sub-optimal choice of parameters in the methods, they nevertheless reveal general characteristics that are helpful to the biological investigator.  相似文献   

2.
Genomic aberrations have increasingly gained attention as prognostic markers in B-cell chronic lymphocytic leukemia (CLL). Fluorescence in situ hybridization (FISH) has improved the detection rate of genomic alterations in CLL from approximately 50% using conventional cytogenetics to greater than 80%. More recently, array comparative genomic hybridization (CGH) has gained popularity as a clinical tool that can be applied to detect genomic gains and losses of prognostic importance in CLL. Array CGH and FISH are particularly useful in CLL because genomic gains and losses are key events with both biologic and prognostic significance, while balanced translocations have limited prognostic value. Although FISH has a higher technical sensitivity, it requires separate, targeted hybridizations for the detection of alterations at genomic loci of interest. Array CGH, on the other hand, has the ability to provide a genome-wide survey of genomic aberrations with a single hybridization reaction. Array CGH is expanding the known genomic regions of importance in CLL and allows these regions to be evaluated in the context of a genome-wide perspective. Ongoing clinical trials are evaluating the use of genomic aberrations as tools for risk-stratifying patients for therapy, thus increasing the need for reliable and high-yield methods to detect these genomic changes. In this review, we consider the use of array CGH as a clinical tool for the identification of genomic alterations with prognostic significance in CLL, and suggest ways to integrate this test into the clinical molecular diagnostic laboratory work flow.  相似文献   

3.
4.
Computation of recurrent minimal genomic alterations from array-CGH data   总被引:4,自引:0,他引:4  
MOTIVATION: The identification of recurrent genomic alterations can provide insight into the initiation and progression of genetic diseases, such as cancer. Array-CGH can identify chromosomal regions that have been gained or lost, with a resolution of approximately 1 mb, for the cutting-edge techniques. The extraction of discrete profiles from raw array-CGH data has been studied extensively, but subsequent steps in the analysis require flexible, efficient algorithms, particularly if the number of available profiles exceeds a few tens or the number of array probes exceeds a few thousands. RESULTS: We propose two algorithms for computing minimal and minimal constrained regions of gain and loss from discretized CGH profiles. The second of these algorithms can handle additional constraints describing relevant regions of copy number change. We have validated these algorithms on two public array-CGH datasets. AVAILABILITY: From the authors, upon request. CONTACT: celine@lri.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

5.

Background

Chromosomal breakage followed by faulty DNA repair leads to gene amplifications and deletions in cancers. However, the mere assessment of the extent of genomic changes, amplifications and deletions may reduce the complexity of genomic data observed by array comparative genomic hybridization (array CGH). We present here a novel approach to array CGH data analysis, which focuses on putative breakpoints responsible for rearrangements within the genome.

Results

We performed array comparative genomic hybridization in 29 primary tumors from high risk patients with breast cancer. The specimens were flow sorted according to ploidy to increase tumor cell purity prior to array CGH. We describe the number of chromosomal breaks as well as the patterns of breaks on individual chromosomes in each tumor. There were differences in chromosomal breakage patterns between the 3 clinical subtypes of breast cancers, although the highest density of breaks occurred at chromosome 17 in all subtypes, suggesting a particular proclivity of this chromosome for breaks. We also observed chromothripsis affecting various chromosomes in 41% of high risk breast cancers.

Conclusions

Our results provide a new insight into the genomic complexity of breast cancer. Genomic instability dependent on chromosomal breakage events is not stochastic, targeting some chromosomes clearly more than others. We report a much higher percentage of chromothripsis than described previously in other cancers and this suggests that massive genomic rearrangements occurring in a single catastrophic event may shape many breast cancer genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-579) contains supplementary material, which is available to authorized users.  相似文献   

6.
Insulinomas represent the predominant syndromic subtype of endocrine pancreatic tumors (EPTs). Their metastatic potential cannot be predicted reliably using histopathological criteria. In the past few years, several attempts have been made to identify prognostic markers, among them TP53 mutations and immunostaining of p53 and recently cytokeratin 19 (CK19). In a previous study using conventional comparative genomic hybridization (CGH) we have shown that chromosomal instability (CIN) is associated with metastatic disease in insulinomas. It was our aim to evaluate these potential parameters in a single study. For the determination of CIN, we applied CGH to microarrays because it allows a high-resolution detection of DNA copy number changes in comparison with conventional CGH as well as the analysis of chromosomal regions close to the centromeres and telomeres, and at 1pter-->p32, 16p, 19 and 22. These regions are usually excluded from conventional CGH analysis, because they may show DNA gains in negative control hybridizations. Array CGH analysis of 30 insulinomas (15 tumors of benign, eight tumors of uncertain and seven tumors of malignant behavior) revealed that >or=20 chromosomal alterations and >or=6 telomeric losses were the best predictors of malignant progression. A subset of 22 insulinomas was further investigated for TP53 exon 5-8 gene mutations, and p53 and CK19 expression. Only one malignant tumor was shown to harbor an arginine 273 serine mutation and immunopositivity for p53. CK19 immunopositivity was detected in three malignant tumors and one tumor with uncertain behavior. In conclusion, our results indicate that CIN as well as telomeric loss are very powerful indicators for malignant progression in sporadic insulinomas. Our data do not support a critical role for p53 and CK19 as molecular parameters for this purpose.  相似文献   

7.
Current cytogenetic methods (e.g., G-banding and multicolor chromosomal painting) allow detection of translocation events but lack the resolution to (a) locate the breakpoints precisely at the chromosome band level or (b) discriminate balanced translocations from translocations with copy number alterations not previously reported, or imperfectly balanced translocations. In this study, we demonstrate that cytogenetically balanced translocations are in fact frequently associated with segmental gain or loss of DNA. The recent development of a whole genome tiling path BAC array has enabled tiling resolution analysis of genomic segmental copy number status. Combining tiling resolution BAC array comparative genomic hybridization (array CGH) with G-Banding analysis and multicolor chromosomal painting approaches such as spectral karyotyping (SKY) facilitates high-resolution mapping of genomic alterations associated with imperfectly balanced translocations. Using a refined version of our CGH array we have deduced the copy number status throughout the genomes of three cytogenetically well-characterized prostate cancer cell lines (PC3, DU145, LNCaP) to determine whether translocations are associated with focal gains and losses of DNA. At 78 kb tiling resolution we identified the boundaries of 170, 80, and 34 known and novel copy number alterations (CNA) in these cell line genomes, respectively. Thirty-three of the 36 known translocations (92%, P < 0.001) in DU145 were associated with segmental CNA. Likewise, 80% (P < 0.001) of the known translocations showed association in LNCaP. Although many translocation breakpoints exhibit segmental alteration in PC3, the pattern of chromosomal rearrangements is too complex for use in comprehensive association with CNA boundaries. Our results reveal that imperfectly balanced translocations in tumor genomes are a phenomenon that occurs at frequencies much higher than previously demonstrated. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
In addition to the widely used cytogenetic standard approaches, molecular methods are being increasingly used in prenatal diagnostics. While molecular cytogenetics, e.g., fluorescence in situ hybridization (FISH), has been used for many years in invasive prenatal diagnostics, array-based diagnostics are only now being implemented in this field. FISH is prenatally applied for determination of size of a mosaic cell clone, for exclusion of a microdeletion, or for further clarification of structural chromosomal aberrations. Array CGH (comparative genomic hybridization) is used more conservatively in prenatal diagnostics, mostly for further clarification in sonographically abnormal fetuses and to diagnose breakpoints in cases with proven chromosomal changes. In the future, array CGH will gain further importance, but already provides a valuable supplement to the diagnostic approaches of the cytogenetic and the molecular-based methods.  相似文献   

9.
DNA copy number alterations, including entire chromosomal changes and small interstitial DNA amplifications and deletions, characterize the development of cancer. These changes usually affect the expression of target genes and subsequently the function of the target proteins. Since the completion of the human genome project, the capacity to comprehensively analyze the human cancer genome has expanded significantly. Techniques such as digital karyotyping have been developed to allow for the detection of DNA copy number alterations in cancer at the whole-genome scale. When compared with conventional methods such as spectral karyotyping, representational difference analysis, comparative genomic hybridization (CGH), or the more recent array CGH; digital karyotyping provides an evaluation of copy number of genetic material at higher resolution. Digital karyotyping has therefore promised to enhance our understanding of the cancer genome. This article provides an overview of digital karyotyping including the principle of the technology and its applications in identifying potential oncogenes and tumor suppressor genes.  相似文献   

10.

Background  

Array comparative genomic hybridization (CGH) is a technique which detects copy number differences in DNA segments. Complete sequencing of the human genome and the development of an array representing a tiling set of tens of thousands of DNA segments spanning the entire human genome has made high resolution copy number analysis throughout the genome possible. Since array CGH provides signal ratio for each DNA segment, visualization would require the reassembly of individual data points into chromosome profiles.  相似文献   

11.

Background  

Array CGH (Comparative Genomic Hybridisation) is a molecular cytogenetic technique for the genome wide detection of chromosomal imbalances. It is based on the co-hybridisation of differentially labelled test and reference DNA onto arrays of genomic BAC clones, cDNAs or oligonucleotides, and after correction for various intervening variables, loss or gain in the test DNA can be indicated from spots showing aberrant signal intensity ratios.  相似文献   

12.
Diagnostic genome profiling in mental retardation   总被引:16,自引:0,他引:16       下载免费PDF全文
Mental retardation (MR) occurs in 2%-3% of the general population. Conventional karyotyping has a resolution of 5-10 million bases and detects chromosomal alterations in approximately 5% of individuals with unexplained MR. The frequency of smaller submicroscopic chromosomal alterations in these patients is unknown. Novel molecular karyotyping methods, such as array-based comparative genomic hybridization (array CGH), can detect submicroscopic chromosome alterations at a resolution of 100 kb. In this study, 100 patients with unexplained MR were analyzed using array CGH for DNA copy-number changes by use of a novel tiling-resolution genomewide microarray containing 32,447 bacterial artificial clones. Alterations were validated by fluorescence in situ hybridization and/or multiplex ligation-dependent probe amplification, and parents were tested to determine de novo occurrence. Reproducible DNA copy-number changes were present in 97% of patients. The majority of these alterations were inherited from phenotypically normal parents, which reflects normal large-scale copy-number variation. In 10% of the patients, de novo alterations considered to be clinically relevant were found: seven deletions and three duplications. These alterations varied in size from 540 kb to 12 Mb and were scattered throughout the genome. Our results indicate that the diagnostic yield of this approach in the general population of patients with MR is at least twice as high as that of standard GTG-banded karyotyping.  相似文献   

13.
14.
Microarray-based comparative genomic hybridization (array-CGH) is a technique by which variations in copy numbers between two genomes can be analyzed using DNA microarrays. Array CGH has been used to survey chromosomal amplifications and deletions in fetal aneuploidies or cancer tissues. Herein we report a user-friendly, MATLAB-based, array CGH analyzing program, Chang Gung comparative genomic hybridization (CGcgh), as a standalone PC version. The analyzed chromosomal data are displayed in a graphic interface, and CGcgh allows users to launch a corresponding G-banding ideogram. The abnormal DNA copy numbers (gains and losses) can be identified automatically using a user defined window size (default value is 50 probes) and sequential student t-tests with sliding windows along with chromosomes. CGcgh has been tested in multiple karyotype-confirmed human samples, including five published cases and trisomies 13, 18, 21 and X from our laboratories, and 18 cases of which microarray data are available publicly. CGcgh can be used to detect the copy number changes in small genomic regions, which are commonly encountered by clinical geneticists. CGcgh works well for the data from cDNA microarray, spotted oligonucleotide microarrays, and Affymetrix Human Mapping Arrays (10K, 100K, 500K Array Sets). The program can be freely downloaded from . Y. S. Lee and A. Chao contributed equally to this work.  相似文献   

15.
Summary Array CGH is a high‐throughput technique designed to detect genomic alterations linked to the development and progression of cancer. The technique yields fluorescence ratios that characterize DNA copy number change in tumor versus healthy cells. Classification of tumors based on aCGH profiles is of scientific interest but the analysis of these data is complicated by the large number of highly correlated measures. In this article, we develop a supervised Bayesian latent class approach for classification that relies on a hidden Markov model to account for the dependence in the intensity ratios. Supervision means that classification is guided by a clinical endpoint. Posterior inferences are made about class‐specific copy number gains and losses. We demonstrate our technique on a study of brain tumors, for which our approach is capable of identifying subsets of tumors with different genomic profiles, and differentiates classes by survival much better than unsupervised methods.  相似文献   

16.
Data from ten years of research using comparative genomic hybridization (CGH) for the detection of chromosomal alterations in human solid tumors are concisely reviewed. By use of a basic methodology with some variations more or less specific patterns of genomic imbalances were found in a large number of tumors of various entities. Specific gains and losses of genomic material have not only opened the way to the detection of a series of cancer-related genes but also to clinical implications. Not only several areas of basic oncogenetic research, but also differential diagnosis, prognosis of disease progression, and therapeutic decisions have profited by CGH.  相似文献   

17.
BACKGROUND: Comparative genomic hybridization (CGH) is a relatively new molecular cytogenetic method for detecting chromosomal imbalance. Karyotyping of human metaphases is an important step to assign each chromosome to one of 23 or 24 classes (22 autosomes and two sex chromosomes). Automatic karyotyping in CGH analysis is needed. However, conventional karyotyping approaches based on DAPI images require complex image enhancement procedures. METHODS: This paper proposes a simple feature extraction method, one that generates density profiles from original true color CGH images and uses normalized profiles as feature vectors without quantization. A classifier is developed by using support vector machine (SVM). It has good generalization ability and needs only limited training samples. RESULTS: Experiment results show that the feature extraction method of using color information in CGH images can improve greatly the classification success rate. The SVM classifier is able to acquire knowledge about human chromosomes from relatively few samples and has good generalization ability. A success rate of moe than 90% has been achieved and the time for training and testing is very short. CONCLUSIONS: The feature extraction method proposed here and the SVM-based classifier offer a promising computerized intelligent system for automatic karyotyping of CGH human chromosomes.  相似文献   

18.
肿瘤染色体畸变分析方法新进展   总被引:1,自引:0,他引:1  
薛渊博  宋鑫 《遗传》2008,30(12):1529-1535
摘要: 肿瘤的发生多与染色体畸变有关, 确定染色体畸变与肿瘤的关系, 必然离不开染色体畸变的检测分析。文章简要综述几种常用染色体畸变的检测方法及其新进展, 包括G显带、荧光原位杂交(FISH )、光谱核型分析(SKY)、多色荧光原位杂交(M-FISH)、多色显带分析技术(Rx-FISH)、比较基因组杂交(CGH)和微阵列比较基因组杂交(Array CGH), 以及这些方法在肿瘤诊断和研究方面的应用。  相似文献   

19.
Chromosomal imbalances such as deletions and amplifications are common rearrangements in most tumors. Specific rearrangements are consistently associated with specific tumor types or stages, implicating the role of the genes in a region of chromosomal imbalance in tumor initiation and progression. The development of comparative genomic hybridization (CGH) has obviated the need to obtain metaphase spreads from tumors, so that the chromosomal imbalances in many solid tumors may be revealed using an extracted genomic DNA sample. However, the resolution of the cytogenetic method remains and the extreme technical difficulty of CGH has restricted its use. Conceptually, DNA microarray-based CGH is an obvious solution to all of the limitations of conventional CGH. Although arrays have been used for CGH studies, their success has been limited by poor specific signal-to-noise ratios. Here we demonstrate a microarray-based CGH method that allows reliable detection of chromosomal deletions and amplifications with high resolution. Our microarray system is fundamentally different from most current microarray technologies in that activated DNA is printed on natural glass surfaces while other systems almost exclusively focus on activating the surfaces, a strategy that invariably introduces hybridization backgrounds. The concept of using pre-modification may be generally applied for making arrays of other biological materials, as modifying the substrates will be more controllable in solution than on surfaces.  相似文献   

20.
Constitutional Complex Chromosomal Rearrangements (CCRs) are very rare. While the vast majority of CCRs involve more than one chromosome, only seven cases describe CCRs with four or more breakpoints within a single chromosome. Here, we present a patient with multiple congenital anomalies and mental retardation. Array Comparative Genomic Hybridisation (array CGH), FISH and Multicolour Banding FISH revealed a de novo complex rearrangement with two deletions, a duplication and an inversion of 4q. This CCR involving at least seven breakpoints is one of the most complex rearrangements of a single chromosome reported thus far. Potential mechanisms generating such complex rearrangements are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号