首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deoxycoformycin-resistant rat hepatoma cells exhibit up to 300-fold increase in adenosine deaminase activity compared to the sensitive parental cells. In order to determine the basis of the increased enzyme activity in deoxycoformycin-resistant cells, adenosine deaminase was purified from rat liver and deoxycoformycin-sensitive and -resistant cells. Physical, kinetic, and immunological properties of the purified enzymes were compared. Purified adenosine deaminase from all sources was found to be a monomer with an Mr approximately 45,000. In addition, the purified enzymes had a similar isozyme pattern in nondenaturing polyacrylamide gels. Km values for adenosine and Ki values for deoxycoformycin did not differ among the purified enzymes. By double diffusion analysis and quantitative immunoprecipitation, the purified enzymes were found to be immunologically indistinguishable. These data indicate that deoxycoformycin-resistant rat hepatoma cells produce increased amounts of adenosine deaminase protein which results in increased enzymatic activity.  相似文献   

2.
Mammalian adenosine deaminase has been shown by genetic and biochemical evidence to be essential for the development of the immune system. For the purpose of studying the function and structure of this enzyme, we have isolated by genetic selection a mouse cell line, B-1/50, in which adenosine deaminase levels were increased 4,300-fold over the parent cell line. The enzyme was purified from these cells in large quantity and high yield by a simple two-step purification scheme. The enzyme derived from the B-1/50 cells was indistinguishable from that of the parental cells as judged by several biochemical criteria. The Km (30 microM) and Ki (4 nM) values using adenosine as substrate and 2'-deoxycoformycin as inhibitor, respectively, were identical for the enzyme derived from the parental cells as well as the adenosine deaminase gene amplification mutants. The enzyme from both cell types exhibited multiple isoelectric focusing forms which co-purified using our purification protocol. Electrophoretic analysis using sodium dodecyl sulfate-polyacrylamide gels showed that adenosine deaminase migrated with an apparent molecular weight of 41,000 or 36,000 depending on whether the enzyme was reduced or oxidized, respectively. This shift was reversible, indicating that proteolysis was not responsible for the faster migrating form. Monospecific antibodies raised against purified adenosine deaminase cross-reacted with the enzyme derived from the parental cells and precipitated 37% of the total soluble protein in the B-1/50 cells. Continued genetic selection resulted in the isolation of cells in which adenosine deaminase was overproduced by 11,400-fold and accounted for over 75% of the soluble protein.  相似文献   

3.
Adenosine deaminase was purified 3038-fold to apparent homogeneity from human leukaemic granulocytes by adenosine affinity chromatography. The purified enzyme has a specific activity of 486 mumol/min per mg of protein at 35 degrees C. It exhibits a single band when subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, non-denaturing polyacrylamide-gel electrophoresis and isoelectric focusing. The pI is 4.4. The enzyme is a monomeric protein of molecular weight 44000. Both electrophoretic behaviour and molecular weight differ from those of the low-molecular-weight adenosine deaminase purified from human erythrocytes. Its amino acid composition is reported. Tests with periodic acid-Schiff reagent for associated carbohydrate are negative. Of the large group of physiological compounds tested as potential effectors, none has a significant effect. The enzyme is specific for adenosine and deoxyadenosine, with Km values of 48 microM and 34 microM respectively. There are no significant differences in enzyme function on the two substrates. erythro-9-(2-Hydroxy non-3-yl) adenine is a competitive inhibitor, with Ki 15 nM. Deoxycoformycin inhibits deamination of both adenosine and deoxyadenosine, with an apparent Ki of 60-90 pM. A specific antibody was developed against the purified enzyme, and a sensitive radioimmunoassay for adenosine deaminase protein is described.  相似文献   

4.
IgGs against adenosine deaminase from rat brain, rat liver, mouse duodenum and human erythrocyte were purified from rabbit antisera with yields of 82-87%. The inhibition of adenosine deaminase by the antienzyme is studied, and it is demonstrated that rat and mouse antibodies are tight-binding inhibitors. These antibodies inhibit either the rat or the mouse enzymes and do not inhibit the human erythrocytes enzyme. The human antibody does not inhibit either the human or the rat or mouse enzyme. These results indicate that some differences in antigenic behaviour near the active site must be encountered among species. Comparing the sequenced of the two products corresponding to two adenosine deaminase genes recently sequenced (human and murine) a hypothesis concerning the localization of the adenosine deaminase active site is proposed.  相似文献   

5.
AMP deaminase from sheep brain was purified to homogeneity on SDS-PAGE and its general properties were investigated. The native enzyme has a molecular weight of approximately 350,000 as estimated by gel filtration and it is composed of four identical subunits with a molecular weight of 85,000 each. The purified enzyme had a specific activity of 500 units/mg protein and shows a sigmoid-shaped AMP saturation curve in the presence of 100 mM KCl. This deaminase is strongly activated by ATP and inhibited by GTP. It slightly catalyzes the hydrolysis of adenosine monosulfate (AMS), dAMP, and adenosine phosphoramidate (APA). These catalytic properties resemble those of AMP deaminase from human liver.  相似文献   

6.
Human adenosine deaminase. Distribution and properties.   总被引:20,自引:0,他引:20  
Adenosine deaminase exists in multiple molecular forms in human tissue. One form of the enzyme appears to be "particulate". Three forms of the enzyme are soluble and interconvertible with apparent molecular weights of approximately 36,000, 114,000, and 298,000 (designated small, intermediate, and large, respectively). The small form of adenosine deaminase is convertible to the large form only in the presence of a protein, which has an apparent molecular weight of 200,000 and has no adenosine deaminase activity. This conversion of the small form of the enzyme to the large form occurs at 4 degrees, exhibits a pH optimum of 5.0 to 8.0, and is associated with a loss of conversion activity. The small form of the enzyme predominates in tissue preparations exhibiting the higher enzyme-specific activities and no detectable conversion activity. The large form of adenosine deaminase predominates in tissue extracts exhibiting the lower enzyme specific activities and abundant conversion activity. The small form of adenosine deaminase shows several electrophoretic variants by isoelectric focusing. The electrophoretic heterogeneity observed with the large form of the enzyme is similar to that observed with the small form, with the exception that several additional electrophoretic variants are uniformly identified. No organ specificity is demonstrable for the different electrophoretic forms. The kinetic characteristics of the three soluble molecular species of adenosine deaminase are identical except for pH optimum, which is 5.5 for the intermediate species and 7.0 to 7.4 for the large and small forms.  相似文献   

7.
Adenosine deaminase is a purine salvage enzyme that catalyzes the deamination of adenosine and deoxyadenosine. Deficiency of the enzyme activity is associated with T-cell and B-cell dysfunction. Mutant adenosine deaminase has been isolated from heterozygous and homozygous deficient lymphoblast cell lines with the aid of an affinity matrix consisting of coformycin (a potent inhibitor of the enzyme) as the affinity ligand, bound to 3,3'-iminobispropylamine-derivatized Sepharose. Routinely, 80-90% of adenosine deaminase in crude cell homogenates could be bound to the material. Adenosine deaminase was specifically eluted by enzyme inhibitors or less efficiently by high substrate concentrations. Protein preparations isolated from several different deficient cell lines were highly purified and exhibited molecular weights identical to wild-type adenosine deaminase. This method produces a protein that is suitable for structural studies.  相似文献   

8.
A severe genetic deficiency of adenosine deaminase is causally associated with an autosomal recessive form of severe combined immunodeficiency disease, while subjects with absent erythrocyte but partial lymphocyte enzyme activity remain immunocompetent. The genetic expression of adenosine deaminase in B-lymphoblast cell lines derived from four unrelated subjects with the "partial" enzyme deficiency was examined. Enzymatic activity among these cell lines ranged from 5 to 50% of normal with the level of immunoreactive adenosine deaminase protein either proportional to enzyme activity or elevated in two of the cases. Northern blot analysis using a cDNA probe showed that adenosine deaminase mRNA in each of these cell lines was of normal expected size (1.6-1.8 kilobases) and was present in normal to above normal amounts. Rates of enzyme synthesis varied from 165 to 15% of normal. Adenosine deaminase protein degradation rates in these cell lines were 1.5 to almost 3 times faster than normal, consistent with the observed absence of the enzyme in erythrocytes. From these analyses apparent abnormalities in mRNA regulation, translation, and protein degradation can be identified among the partially adenosine deaminase-deficient cell lines studied. Ultimately, it will be essential to determine the nature of the protein mutation and the gene defect to define the structural alterations and functional abnormalities of enzyme variants isolated from subjects with partial adenosine deaminase deficiency.  相似文献   

9.
Adenosine kinase (EN 2.7.1.20) from rat and dog heart was purified until it was devoid of adenosine deaminase activity. A stimulation of adenosine kinase activity by dipyridamole was observed when the enzyme was assayed under optimal conditions. At low substrate concentrations adenosine kinase was inhibited by the drug. It increased the Km for adenosine sevenfold. The effects of dipyridamole were Mg2+-dependent. The adenosine-sparing action of dipyridamole at low substrate concentrations is in keeping with the vasodilatory action of the drug.  相似文献   

10.
The activity of myocardial adenosine kinase (E.N. 2.7.1.20) in a number of species was assayed. Rat heart contained the highest specific activity. From this source adenosine kinase was purified in a simple way 80-fold, until it was free of adenosine deaminase activity. A molecular weight of about 39 000 was measured. NSC 113939 (1), NSC 113940 and 8-azaadenosine inhibited myocardial adenosine kinase. Dipyridamole stimulated the enzyme at high adenosine levels, and inhibited at low substrate concentrations. A number of divalent cations could (partially) substitute for Mg2+. The optimal concentration of MgCl2 or MnCl2 was about 0.5 mM; concentrations exceeding 1 mM inhibited severely. An apparent Km for ATP of 0.1 mM was measured, whereas an apparent Km for adenosine of 0.5 muM was was found. The latter increased to 3.3 muM, when dipyridamole was added. Replacement of ATP by GTB or ITP increased the activity, and UTP and CTP were inferior as a phosphate donor.  相似文献   

11.
In Micrococcus sodonensis and some other Micrococcus species, adenosien deaminase is present both as a membran-bound and a soluble enzyme; The membran-bound adenosine deaminase can be extracted with n-butanol, and may account for up to 5% of the total cellular adenosine deaminase activity. In a number oc comparative tests, no differences between the two enzyme forms could be found, thus they are believed to be similar molecular species; The purified membran-bound or soluble enzyme had a molecular weight, obtained by gel-filtration, of 130 000 and was inactive toward adenine and adenine mononucleotides. It appears, therefore, to be more closely related to the calf-intestine enzyme than the Aspergillus oryzae form in respect to size and substrate specificity; Attempts to correlate membrane-bound adenosine deaminase activity with adenosine transport in isolated membrane vesicles of M. sodonensis indicated no obvious relationship between the two activities.  相似文献   

12.
Adenine deaminase activity of the yicP gene product of Escherichia coli.   总被引:1,自引:0,他引:1  
During previous work on deriving inosine-producing mutants of Escherichia coli, we observed that an excess of adenine added to the culture medium was quickly converted to hypoxanthine. This phenomenon was still apparent after disruption of the known adenosine deaminase gene (add) on the E. coli chromosome, suggesting that, like Bacillus subtilis, E. coli has an adenine deaminase. As the yicP gene of E. coli shares about 35% identity with the B. subtilis adenine deaminase gene (ade), we cloned yicP from the E. coli genome and developed a strain that overexpressed its product. The enzyme was purified from a cell extract of E. coli harboring a plasmid containing the cloned yicP gene, and had significant adenine deaminase [EC 3.5.4.2] activity. It was deduced to be a homodimer, each subunit having a molecular mass of 60 kDa. The enzyme required manganese ions as a cofactor, and adenine was its only substrate. Its optimum pH was 6.5-7.0 and its optimum temperature was 60 degrees C. The apparent Km for adenine was 0.8 mM.  相似文献   

13.
Glutaraldehyde-fixed membranes from rabbit kidney cortex were used to characterize binding of monomeric adenosine deaminase to the adenosine deaminase complexing protein. With the use of bovine adenosine deaminase it was shown that enzyme binding is a saturable, high affinity process. The K value for binding of the bovine enzyme was 11 nM. Maximum enzyme binding and rate of binding to a constant amount of membrane did not vary significantly from pH 5.0 to 9.5. Metal ions, with the exception of Hg2+, sulfhydryl reagents, and other proteins had little or a slightly stimulatory effect on maximum binding. Mercuric ion inhibited binding. Using biotinylated bovine adenosine deaminase it was shown that purified rabbit, human, and monkey enzymes compete for binding sites on fixed membranes. The K values for the rabbit and human enzymes were 9 and 6 nM, respectively. Mouse or guinea pig adenosine deaminase did not bind to the membranes or compete with the biotinylated bovine enzyme for binding sites. The retention of characteristics required for binding by enzymes from rabbit, human, monkey, and calf tissues argues for biologic significance of the adenosine deaminase-complexing protein interaction. The basis for the apparent failure of rodent adenosine deaminase to bind to complexing protein remains to be determined.  相似文献   

14.
Adenosine deaminase (EC 3.5.4.4) was found to occur in the extract of Azotobacter vinelandii, strain 0, and purified by heating at 65°C, fractionation with ammonium sulfate, DEAE-cellulose chromatography and gel filtration on Sephadex G-150. Purified adenosine deaminase was effectively stabilized by the addition of ethylene glycol. The molecular weight of the enzyme was estimated to be 66,000 by gel filtration on Sephadex G-150. The enzyme specifically attacked adenosine and 2-deoxyadenosine to the same extent, and formycin A to a lesser extent. The pH optimum of the enzyme was observed at pH 7.2. Double reciprocal plot of initial velocity versus adenosine concentration was concave upward, and Hill interaction coefficient was calculated to be 1.5, suggesting the allosteric binding of the substrate. ATP inhibited adenosine deaminase in an allosteric manner, whereas other nucleotides were without effect. The physiological significance of the enzyme was discussed in relation to salvage pathway of purine nucleotides.  相似文献   

15.
Adenosine deaminase was induced when the cells of Klebsiella sp. LF 1202 were cultured in the medium containing adenosine as a sole source of carbon and nitrogen. The induction was partially repressed by the addition of ammonium sulfate in the medium. The amount of adenosine deaminase reached approximately 4.6% of the total intracellular soluble proteins. The enzyme was purified approximately 22-fold with a 25% activity yield. The enzyme was a monomer with a molecular weight of 26,000. The optimal activity was obtained at pH 8.0, 37°C, and the Km value for adenosine was 37 μM. Metal ions such as Zn2+, Co2+, Fe2 and Ni+ inhibited the activity of the enzyme. Sulfhydryl blocking agents such as p-chloromercuribenzoate and HgCl2 were also found to be potent inhibitors for adenosine deaminase.  相似文献   

16.
Human malaria infected erythrocytes show a dramatic increase in adenosine deaminase activity in vitro. Using recently developed culture techniques, adenosine deaminase-deficient human erythrocytes were infected in vitro with the major human pathogen Plasmodium falciparum. Adenosine deaminase activity was undetectable in the uninfected host red cells, but increased by 2-fold over normal levels in these cells with an 8% parasitemia. The enzyme in these cells appeared unique in that its activity was markedly elevated over that of other parasite purine enzymes, was not cross-reactive with antibody against human erythrocyte adenosine deaminase, and though inhibited competitively by deoxycoformycin was relatively insensitive to erythro-9-(2-hydroxy-3-nonyl) adenine. The use of adenosine deaminase-deficient erythrocytes for the in vitro cultivation of Plasmodium provides a unique system for the study of parasite enzyme and allows further insight into the purine metabolism of the intraerythrocytic malaria parasite.  相似文献   

17.
Bovine brain adenosine deaminase cytoplasmatic form was purified about 450 fold by salt fractionation, column chromatography on DEAE-cellulose, octyl-sepharose 4B and affinity chromatography on CH-sepharose 4B 9-(p-aminobenzyl)adenine. The purified enzyme was homogeneous on disc gel electrophoresis; the enzyme had a molecular mass of about 65 kDa with an isoelectric point at pH 4.87. The Km values for adenosine and 2'-deoxyadenosine were 4 x 10(-5) and 5.2 x 10(-5) M, respectively. The enzyme showed a great stability to temperature with a half life of 15 hours at 53 degrees C significantly different compared to that known for other mammalian forms of this enzyme. Aza and deaza analogs of adenosine and erythro-9-(2-hydroxy-3-nonyl) adenine were good inhibitors of the bovine brain enzyme with little difference with respect to those reported for the adenosine deaminases purified from other sources. Kinetic constants for the association and dissociation of coformycin and 2'-deoxycoformycin with the bovine brain adenosine deaminase are reported.  相似文献   

18.
In the process of sequencing a subtracted cDNA library from the salivary glands of the sand fly Lutzomyia longipalpis, we identified a cDNA with similarities to gene products of the adenosine deaminase family. Prompted by this cDNA finding, we detected adenosine deaminase activity at levels of 1 U/mg protein in salivary gland homogenates. The activity was significantly reduced following a blood meal indicating its apparent secretory fate. The native enzyme has a K(m) of approximately 10 microM, an isoelectric pH between 4.5 and 5.5, and an apparent molecular weight of 52 kDa by size exclusion chromatography. The possible role of this enzyme, which converts adenosine to inosine, in the feeding physiology of L. longipalpis is discussed.  相似文献   

19.
The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s?1 at 30 °C. Since adenine is deaminated ~103 slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism.  相似文献   

20.
S-Adenosyl-L-homocysteine hydrolase has been purified to apparent homogeneity from rat liver by means of affinity chromatography on 8-(3-aminopropylamino)adenosine linked to Sepharose. The purified enzyme was free from adenosine kinase and adenosine deaminase activities and was homogeneous on SDS/polyacrylamide-gel electrophoresis which gave a subunit mol.wt. of 47 000. The native enzyme showed some microheterogeneity on polyacrylamide-gel electrophoresis under increased-resolution conditions but was homogeneous on isoelectric focusing (pI 5.6). The molecular weight of the native enzyme was about 220 000 as judged by pore-gradient electrophoresis. The native enzyme bound adenosine tightly and showed Km values of 0.6 microM, 0.9 microM and 60 microM for adenosine, S-adenosyl-L-homocysteine and L-homocysteine respectively. The enzyme was rapidly inactivated when incubated in the presence of adenosine, S-adenosyl-L-homocysteine or several adenosine derivatives or analogues. Inactivation took place both at 0 and 37 degrees C. Freezing in the absence of glycerol resulted in the appearance of dissociation products of the oligomeric protein. Multimer formation was observed at low thiol concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号