首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
Urate oxidase (EC 1.7.3.3 or UOX) catalyzes the conversion of uric acid using gaseous molecular oxygen to 5-hydroxyisourate and hydrogen peroxide in absence of any cofactor or transition metal. The catalytic mechanism was investigated using X-ray diffraction, electron spin resonance spectroscopy (ESR), and quantum mechanics calculations. The X-ray structure of the anaerobic enzyme-substrate complex gives credit to substrate activation before the dioxygen fixation in the peroxo hole, where incoming and outgoing reagents (dioxygen, water, and hydrogen peroxide molecules) are handled. ESR spectroscopy establishes the initial monoelectron activation of the substrate without the participation of dioxygen. In addition, both X-ray structure and quantum mechanic calculations promote a conserved base oxidative system as the main structural features in UOX that protonates/deprotonates and activate the substrate into the doublet state now able to satisfy the Wigner's spin selection rule for reaction with molecular oxygen in its triplet ground state.  相似文献   

2.
Mammals that degrade uric acid are not affected by gout or urate kidney stones. It is not fully understood how they convert uric acid into the much more soluble allantoin. Until recently, it had long been thought that urate oxidase was the only enzyme responsible for this conversion. However, detailed studies of the mechanism and regiochemistry of urate oxidation have called this assumption into question, suggesting the existence of other distinct enzymatic activities. Through phylogenetic genome comparison, we identify here two genes that share with urate oxidase a common history of loss or gain events. We show that the two proteins encoded by mouse genes catalyze two consecutive steps following urate oxidation to 5-hydroxyisourate (HIU): hydrolysis of HIU to give 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and decarboxylation of OHCU to give S-(+)-allantoin. Urate oxidation produces racemic allantoin on a time scale of hours, whereas the full enzymatic complement produces dextrorotatory allantoin on a time scale of seconds. The use of these enzymes in association with urate oxidase could improve the therapy of hyperuricemia.  相似文献   

3.
The localization of dioxygen sites in oxygen-binding proteins is a nontrivial experimental task and is often suggested through indirect methods such as using xenon or halide anions as oxygen probes. In this study, a straightforward method based on x-ray crystallography under high pressure of pure oxygen has been developed. An application is given on urate oxidase (UOX), a cofactorless enzyme that catalyzes the oxidation of uric acid to 5-hydroxyisourate in the presence of dioxygen. UOX crystals in complex with a competitive inhibitor of its natural substrate are submitted to an increasing pressure of 1.0, 2.5, or 4.0 MPa of gaseous oxygen. The results clearly show that dioxygen binds within the active site at a location where a water molecule is usually observed but does not bind in the already characterized specific hydrophobic pocket of xenon. Moreover, crystallizing UOX in the presence of a large excess of chloride (NaCl) shows that one chloride ion goes at the same location as the oxygen. The dioxygen hydrophilic environment (an asparagine, a histidine, and a threonine residues), its absence within the xenon binding site, and its location identical to a water molecule or a chloride ion suggest that the dioxygen site is mainly polar. The implication of the dioxygen location on the mechanism is discussed with respect to the experimentally suggested transient intermediates during the reaction cascade.  相似文献   

4.
We report the identification and purification of a novel enzyme from soybean root nodules that catalyzes the hydrolysis of 5-hydroxyisourate, which is the true product of the urate oxidase reaction. The product of this reaction is 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, and the new enzyme is designated 5-hydroxyisourate hydrolase. The enzyme was purified from crude extracts of soybean root nodules approximately 100-fold to apparent homogeneity with a final specific activity of 10 micromol/min/mg. The enzyme exhibited a native molecular mass of approximately 68 kDa by gel filtration chromatography and migrated as a single band on SDS-polyacrylamide gel electrophoresis with a subunit molecular mass of 68 +/- 2 kDa. The purified enzyme obeyed normal Michaelis-Menten kinetics, and the K(m) for 5-hydroxyisourate was determined to be 15 microM. The amino-terminal end of the purified protein was sequenced, and the resulting sequence was not found in any available data bases, confirming the novelty of the protein. These data suggest the existence of a hitherto unrecognized enzymatic pathway for the formation of allantoin.  相似文献   

5.
Urate oxidase catalyzes the oxidation of uric acid with poor solubility to produce 5-hydroxyisourate and allantoin. Since allantoin is excreted in vivo, urate oxidase has the potential to be a therapeutic target for the treatment of gout. However, its severe immunogenicity limits its clinical application. Furthermore, studies on the structure-function relationships of urate oxidase have proven difficult. We developed a method for genetically incorporating p-azido-L-phenylalanine into target protein in Escherichia coli in a site-specific manner utilizing a tyrosyl suppressor tRNA/aminoacyl-tRNA synthetase system. We substituted p-azido-L-phenylalanine for Phe(170) or Phe(281) in urate oxidase. The products were purified and their enzyme activities were analyzed. In addition, we optimized the system by adding a "Shine-Dalgarno (SD) sequence" and tandem suppressor tRNA. This method has the benefit of site-specifically modifying urate oxidase with homogeneous glycosyl and PEG derivates, which can provide new insights into structure-function relationships and improve pharmacological properties of urate oxidase.  相似文献   

6.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5‐diethoxyphosphoryl‐5‐methyl‐pyrroline‐N‐oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

7.
Urate oxidase from Aspergillus flavus catalyzes the degradation of uric acid to [S]-allantoin through 5-hydroxyisourate as a metastable intermediate. The second degradation step is thought either catalyzed by another specific enzyme, or spontaneous. The structure of the enzyme was known at high resolution by X-ray diffraction of I222 crystals complexed with a purine-type inhibitor (8-azaxanthin). Analyzing the X-ray structure of urate oxidase treated with an excess of urate, the natural substrate, shows unexpectedly that the active site recaptures [S]-allantoin from the racemic end product of a second degradation step.  相似文献   

8.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5-diethoxyphosphoryl-5-methyl-pyrroline-N-oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

9.
Urate oxidase transforms uric acid to 5-hydroxyisourate without the help of cofactors, but the catalytic mechanism has remained enigmatic, as the protonation state of the substrate could not be reliably deduced. We have determined the neutron structure of urate oxidase, providing unique information on the proton positions. A neutron crystal structure inhibited by a chloride anion at 2.3 Å resolution shows that the substrate is in fact 8-hydroxyxanthine, the enol tautomer of urate. We have also determined the neutron structure of the complex with the inhibitor 8-azaxanthine at 1.9 Å resolution, showing the protonation states of the K10–T57–H256 catalytic triad. Together with X-ray data and quantum chemical calculations, these structures allow us to identify the site of the initial substrate protonation and elucidate why the enzyme is inhibited by a chloride anion.  相似文献   

10.
Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 10(5) M(-1) s(-1) for compound I and 1.7 × 10(4) M(-1) s(-1) for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease.  相似文献   

11.
12.
Uric acid is the end product of the purine degradation pathway in humans. It is catabolized to allantoin by urate oxidase or uricase (E.C. 1.7.3.3.) in most vertebrates except humans, some primates, birds, and certain species of reptiles. Here we provide evidence that mouse transthyretin-related protein facilitates the hydrolysis of 5-hydroxyisourate, the end product of the uricase reaction. Mutagenesis experiments showed that the residues that are absolutely conserved across the TRP family, including His11, Arg51, His102, and the C-terminal Tyr-Arg-Gly-Ser, may constitute the active site of mTRP. Based on these results, we propose that the transthyretin-related proteins present in diverse organisms are not functionally related to transthyretin but actually function as hydroxyisourate hydrolases.  相似文献   

13.

Background  

Urate oxidase (EC 1.7.3.3 or UOX) catalyzes the conversion of uric acid and gaseous molecular oxygen to 5-hydroxyisourate and hydrogen peroxide, in the absence of cofactor or particular metal cation. The functional enzyme is a homo-tetramer with four active sites located at dimeric interfaces.  相似文献   

14.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5–10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non‐recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost‐effective option in the management of hyperuricemia.  相似文献   

15.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5-10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non-recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost-effective option in the management of hyperuricemia.  相似文献   

16.
Imhoff RD  Power NP  Borrok MJ  Tipton PA 《Biochemistry》2003,42(14):4094-4100
Urate oxidase catalyzes the oxidation of urate without the involvement of any cofactors. The gene encoding urate oxidase from Bacillus subtilis has been cloned and expressed, and the enzyme was purified and characterized. Formation of the urate dianion is believed to be a key step in the oxidative reaction. Rapid-mixing chemical quench studies provide evidence that the dianion is indeed an intermediate; at 15 degrees C the dianion forms within the mixing time of the rapid-quench instrument, and it disappears with a rate constant of 8 s(-)(1). Steady-state kinetic studies indicate that an ionizable group on the enzyme with a pK of 6.4 must be unprotonated for catalysis, and it is presumed that the role of this group is to abstract a proton from the substrate. Surprisingly, examination of the active site provided by the previously reported crystal structure does not reveal any obvious candidates to act as the general base. However, Thr 69 is hydrogen-bonded to the ligand at the active site, and Lys 9, which does not contact the ligand, is hydrogen-bonded to Thr 69. The T69A mutant enzyme has a V(max) that is 3% of wild type, and the K9M mutant enzyme has a V(max) that is 0.4% of wild type. The ionization at pH 6.4 that is observed with wild-type enzyme is absent in both of these mutants. It is proposed that these residues form a catalytic diad in which K9 deprotonates T69 to allow it to abstract the proton from the N9 position of the substrate to generate the dianion.  相似文献   

17.
1. The aerobic loss of GSH added to the supernatant fraction from rat liver is much increased by including the microsome fraction, which both inhibits the concurrent reduction of the GSSG formed and also augments the net oxidation rate. 2. Oxidation occurs with a mixture of dialysed supernatant and a protein-free filtrate; the latter is replaceable by hypoxanthine and the former by xanthine oxidase, whereas fractions lacking this enzyme give no oxidation. 3. In all these instances augmentation occurs with microsomes, with fractions having urate oxidase activity and with the purified enzyme; uric acid and microsomes alone also support the oxidation. 4. Evidence implicating additional protein factors is discussed. 5. It is suggested that GSH oxidation by homogenate is linked through glutathione peroxidase to the reaction of endogenous substrate with supernatant xanthine oxidase and of the uric acid formed with peroxisomal urate oxidase.  相似文献   

18.
Hyperuricosuria, an autosomal recessive disorder, is characterized by high levels of uric acid in the urine of Dalmatian dogs. Whereas high levels of uric acid are known to be caused by the silencing of the urate oxidase (uox) gene in humans and higher primates, the molecular basis for the Dalmatian defect is unknown. Transplantation studies show that the organ responsible for the Dalmatian phenotype is the liver, which is where urate oxidase is exclusively expressed and uric acid is converted into allantoin. We cloned and sequenced the canine uox cDNA and compared the sequence between a Dalmatian and non-Dalmatian dog. No change in cDNA sequence was identified. A Dalmatian x pointer backcross family was used to track the segregation of microsatellite markers surrounding the urate oxidase locus. The uox gene was excluded for Dalmatian hyperuricosuria based on the cDNA sequence identity and negative LOD scores.  相似文献   

19.
Raychaudhuri A  Tipton PA 《Biochemistry》2003,42(22):6848-6852
Hydroxyisourate hydrolase is a recently discovered enzyme that participates in the ureide pathway in soybeans. Its role is to catalyze the hydrolysis of 5-hydroxyisourate, the product of the urate oxidase reaction. There is extensive sequence homology between hydroxyisourate hydrolase and retaining glycosidases; in particular, the conserved active site glutamate residues found in retaining glycosidases are present in hydroxyisourate hydrolase as Glu 199 and Glu 408. However, experimental investigation of their roles, as well as the catalytic mechanism of the enzyme, have been precluded by the instability of 5-hydroxyisourate. Here, we report that diaminouracil serves as a slow, alternative substrate and can be used to investigate catalysis by hydroxyisourate hydrolase. The activity of the E199A protein was reduced 400-fold relative to wild-type, and no activity could be detected with the E408A mutant. Steady-state kinetic studies of the wild-type protein revealed that the pH-dependence of V(max) and V/K describe bell-shaped curves, consistent with the hypothesis that catalysis requires two ionizable groups in opposite protonation states. Addition of 100 mM azide accelerated the reaction catalyzed by the wild-type enzyme 8-fold and the E199A mutant 20-fold but had no effect on the E408A mutant. These data suggest that Glu 408 acts as a nucleophile toward the substrate forming a covalent anhydride intermediate, and Glu 199 facilitates formation of the intermediate by serving as a general acid and then activates water for hydrolysis of the intermediate. Thus, the mechanism of hydroxyisourate hydrolase is strikingly similar to that of retaining glycosidases, even though it catalyzes hydrolysis of an amide bond.  相似文献   

20.
Urate oxidase (E.C.1.7.3.3; uricase, urate oxygen oxidoreductase) is an enzyme of the purine breakdown pathway that catalyzes the oxidation of uric acid in the presence of oxygen to allantoin and hydrogen peroxide. A 96-well plate assay measurement of urate oxidase activity based on hydrogen peroxide quantitation was developed. The 96-well plate method included two steps: an incubation step for the urate oxidase reaction followed by a step in which the urate oxidase activity is stopped in the presence of 8-azaxanthine, a competitive inhibitor. Hydrogen peroxide is quantified during the second step by a horseradish peroxidase-dependent system. Under the defined conditions, uric acid, known as a radical scavenger, did not interfere with hydrogen peroxide quantification. The general advantages of such a colorimetric assay performed in microtiter plates, compared to other methods and in particular the classical UV method performed with cuvettes, are easy handling of large amounts of samples at the same time, the possibility of automation, and the need for less material. The method has been applied to the determination of the kinetic parameters of rasburicase, a recombinant therapeutic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号